Advertisement

Applied Physics A

, 125:45 | Cite as

Electronic structure, magnetism properties and optical absorption of organometal halide perovskite CH3NH3XI3 (X = Fe, Mn)

  • H. X. ZhuEmail author
  • X. H. Wang
  • G. C. Zhuang
Article
  • 69 Downloads

Abstract

The electronic structure, magnetism properties and optical absorption of organometal halide perovskite CH3NH3XI3 (X = Fe, Mn) are studied using the first principles calculations by the generalized gradient approximation (GGA) and the GGA + U method, respectively. The magnetic ground states of CH3NH3MnI3 and CH3NH3FeI3 are both the G-type antiferromagnetic (AFM) order. With the introduction of on-site Coulomb interactions U, CH3NH3FeI3 shows the semiconducting phase from original metallic state predicted by the GGA method. The band gap value of CH3NH3MnI3 with the G-AFM state is 1.68 eV, while the band gap in the spin majority channel is 0.694 eV and the band gap in the spin minority channel is 2.147 eV when system is in FM state. For CH3NH3FeI3 system, the band gap is 0.957 eV when system is in G-AFM state, while the band gap in the spin majority channel is 0.602 eV and the band gap in the spin minority channel is 1.215 eV when system is in FM state, which shows that photo-excited electrons of CH3NH3MnI3 and CH3NH3FeI3 with FM state will rapidly melt the local magnetic order. Furthermore, the optical properties of CH3NH3MnI3 and CH3NH3FeI3 are calculated. CH3NH3MnI3 with the FM state shows strong infrared light absorption. CH3NH3FeI3 with FM state have stronger infrared absorption than that in G-AFM state.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grants no. 11704326).

References

  1. 1.
    M.A. Loi, J.C. Hummelen, Hybrid solar cells: perovskites under the Sun. Nat. Mater. 12, 1087 (2013).  https://doi.org/10.1038/nmat3815 ADSCrossRefGoogle Scholar
  2. 2.
    S. Kazim, M.K. Nazeeruddin, M. Grätzel, S. Ahmad, ChemInform abstract: perovskite as light harvester: a game changer in photovoltaics. Angew. Chem. Int. Ed. 53, 2 (2014).  https://doi.org/10.1002/anie.201308719 CrossRefGoogle Scholar
  3. 3.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009)  https://doi.org/10.1021/ja809598r CrossRefGoogle Scholar
  4. 4.
    L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396 (2012).  https://doi.org/10.1021/ja307789s CrossRefGoogle Scholar
  5. 5.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012).  https://doi.org/10.1126/science.1228604 ADSCrossRefGoogle Scholar
  6. 6.
    H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).  https://doi.org/10.1038/srep00591 CrossRefGoogle Scholar
  7. 7.
    M.Z. Liu, M.B. Johnston, and H. J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013).  https://doi.org/10.1038/nature12509 ADSCrossRefGoogle Scholar
  8. 8.
    E. Mosconi, A. Amat, M.K. Nazeeruddin, M.Gratzel and F. De Angelis, First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117, 13902 (2013).  https://doi.org/10.1021/jp4048659 CrossRefGoogle Scholar
  9. 9.
    C. Wehrenfennig, M. Liu, H.J. Snaith, M.B. Johnston, L.M. Herz, Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3–xClx. J. Phys. Chem. Lett. 5, 1300 (2014).  https://doi.org/10.1021/jz500434p CrossRefGoogle Scholar
  10. 10.
    J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).  https://doi.org/10.1038/nature12340 ADSCrossRefGoogle Scholar
  11. 11.
    H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 345, 542 (2014).  https://doi.org/10.1038/nature12340 ADSCrossRefGoogle Scholar
  12. 12.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014).  https://doi.org/10.1038/nphoton.2014.134 ADSCrossRefGoogle Scholar
  13. 13.
    N.J. Jeon, H.G. Lee, Y.C. Kim, J. Seo, J.H. Noh, J. Lee, S.I. Seok, o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. J. Am. Chem. Soc. 136, 7837 (2014).  https://doi.org/10.1021/ja502824c CrossRefGoogle Scholar
  14. 14.
    J. Feng, B. Xiao, C. Structures, Optical properties, and effective mass tensors of CH3NH3PbX3 (X = I and Br) phases predicted from HSE06. J. Phys. Chem. Lett. 5, 1278 (2014).  https://doi.org/10.1021/jz500480m CrossRefGoogle Scholar
  15. 15.
    M. Grätzel, The light and shade of perovskite solar cells. Nat. Mater. 13, 838 (2014).  https://doi.org/10.1038/nmat4065 ADSCrossRefGoogle Scholar
  16. 16.
    S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energ. Environ. Sci. 7, 399 (2014).  https://doi.org/10.1039/C3EE43161D CrossRefGoogle Scholar
  17. 17.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013).  https://doi.org/10.1126/science.1243982 ADSCrossRefGoogle Scholar
  18. 18.
    B. Cai, Y. Xing, Z. Yang, W. Zhang, J. Qiu, High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 6, 1480 (2013).  https://doi.org/10.1039/C3EE40343B CrossRefGoogle Scholar
  19. 19.
    H.X. Zhu, J.-M. Liu, Electronic structure of organometal halide perovskite CH3NH3BiI3 and optical absorption extending to infrared region. Sci. Rep. 6, 37425 (2016).  https://doi.org/10.1038/srep37425 ADSCrossRefGoogle Scholar
  20. 20.
    N. Nuraje, K. Su, Perovskite ferroelectric nanomaterials. Nanoscale 5, 8752 (2013).  https://doi.org/10.1039/c3nr02543h ADSCrossRefGoogle Scholar
  21. 21.
    B. Huang, G. Kong, E.N. Esfahani, S. Chen, Q. Li, J. Yu, N. Xu, Y. Zhang, S. Xie, H. Wen, P. Gao, J. Zhao, J. Li, Ferroic domains regulate photocurrent in single-crystalline CH3NH3PbI3 films self-grown on FTO/TiO2 substrate. npj Quantum Mater. 3, 30 (2018).  https://doi.org/10.1038/s41535-018-0104-5 ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. Schilfgaarde, A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584 (2014).  https://doi.org/10.1021/nl500390f ADSCrossRefGoogle Scholar
  23. 23.
    R. Gottesman, E. Haltzi, L. Gouda, S. Tirosh, Y. Bouhadana, A. Zaban, E. Mosconi, F.D. Angelis, Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J. Phys. Chem. Lett. 5, 2662 (2014).  https://doi.org/10.1021/jz501373f CrossRefGoogle Scholar
  24. 24.
    M. Coll, A. Gomez, E. Mas-Marza, O. Almora, G. Garcia-Belmonte, Campoy-Quile, M. Bisquer, Polarization switching and light-enhanced piezoelectricity in lead halide perovskites. J. Phys. Chem. Lett. 6, 1408 (2015).  https://doi.org/10.1021/acs.jpclett.5b00502 CrossRefGoogle Scholar
  25. 25.
    K. Gesi, Effect of hydrostatic pressure on the structural phase transitions in CH3NH3PbX3 (X = Cl, Br, I). Ferroelectrics 203, 249 (1997).  https://doi.org/10.1080/00150199708012851 CrossRefGoogle Scholar
  26. 26.
    K. Frost, T. Butler, F. Brivio, C.H. Hendon, M.V. Schilfgaarde, A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584 (2014).  https://doi.org/10.1021/nl500390f ADSCrossRefGoogle Scholar
  27. 27.
    C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019 (2013).  https://doi.org/10.1021/ic401215x CrossRefGoogle Scholar
  28. 28.
    C. Quarti, E. Mosconi, F.D. Angelis, Interplay of orientational order and electronic structure in methylammonium lead iodide: implications for solar cell operation. Chem. Mater. 26, 6557 (2014).  https://doi.org/10.1021/cm5032046 CrossRefGoogle Scholar
  29. 29.
    A. Stroppa, C. Quarti, F.D. Angelis, S. Picozzi, Ferroelectric polarization of CH3NH3PbI3: a detailed study based on density functional theory and symmetry mode analysis. J. Phys. Chem. Lett. 6, 2223 (2015).  https://doi.org/10.1021/acs.jpclett.5b00542 CrossRefGoogle Scholar
  30. 30.
    J. Beilsten-Edmands, G.R. Eperon, R.D. Johnson, H.J. Snaith, P.G. Radaelli, Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices. Appl. Phys. Lett. 106, 173502 (2015).  https://doi.org/10.1063/1.4919109 ADSCrossRefGoogle Scholar
  31. 31.
    B. Náfrádi, P. Szirmai, M. Spina, H. Lee, O.V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forró, E. Horváth, Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3, Nat. Commun. 7, 13406 (2016).  https://doi.org/10.1038/ncomms134 CrossRefGoogle Scholar
  32. 32.
    M. Johnson, R.H. Silsbee, Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790 (1985).  https://doi.org/10.1103/PhysRevLett.55.1790 ADSCrossRefGoogle Scholar
  33. 33.
    G. Prinz, Hybrid ferromagnetic-semiconductor structures. Science 250, 1092 (1990).  https://doi.org/10.1126/science.250.4984.1092 ADSCrossRefGoogle Scholar
  34. 34.
    G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).  https://doi.org/10.1103/PhysRevB.54.11169 ADSCrossRefGoogle Scholar
  35. 35.
    G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, R558 (1993).  https://doi.org/10.1103/PhysRevB.47.558 ADSCrossRefGoogle Scholar
  36. 36.
    L.G. Devi, B.N. Murthy, S.G. Kumar, Photocatalytic activity of V5+, Mo6+ and Th4+ doped polycrystalline TiO2 for the degradation of chlorpyrifos under UV/solar light.J. Mol. Catal. A Chem. 308, 174 (2009).  https://doi.org/10.1016/j.molcata.2009.04.007 CrossRefGoogle Scholar
  37. 37.
    P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).  https://doi.org/10.1103/PhysRevB.50.17953 ADSCrossRefGoogle Scholar
  38. 38.
    W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).  https://doi.org/10.1063/1.4864778 ADSCrossRefGoogle Scholar
  39. 39.
    H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).  https://doi.org/10.1103/PhysRevB.13.5188 ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    L.P.J. Even, J.-M. Jancu, C. Katan, Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999 (2013).  https://doi.org/10.1021/jz401532q CrossRefGoogle Scholar
  41. 41.
    X. Han, G. Shao, Electronic properties of rutile TiO2 with nonmetal dopants from first principles. J. Phys. Chem. C 115, 8274 (2011).  https://doi.org/10.1021/jp1106586 CrossRefGoogle Scholar
  42. 42.
    G. Shao, Electronic structures of manganese-doped rutile TiO2 from first principles. J. Phys. Chem. C 112, 18677 (2008).  https://doi.org/10.1021/jp8043797 CrossRefGoogle Scholar
  43. 43.
    D.O. Scanlon, B.J. Morgan, G.W. Watson, A. Walsh, Acceptor levels in p-type Cu2O: rationalizing theory and experiment. Phys. Rev. Lett. 103, 096405 (2009).  https://doi.org/10.1103/PhysRevLett.103.096405 ADSCrossRefGoogle Scholar
  44. 44.
    M. Nolan, G.W. Watson, Hole localization in Al doped silica: a DFT + U description. J. Chem. Phys. 125, 14470 (2006).  https://doi.org/10.1063/1.2354468 CrossRefGoogle Scholar
  45. 45.
    A. Maalej, Y. Abid, A. Kallel, A. Daoud, A. Lautie, F. Romain, Phase transitions and crystal dynamics in the cubic perovskite CH3NH3PbCl3. Solid State Commun. 103, 279 (1997).  https://doi.org/10.1016/S0038-1098(97)00199-3 ADSCrossRefGoogle Scholar
  46. 46.
    Y. Kawamura, H. Mashiyama, K. Hasebe, Structural study on cubic tetragonal transition of CH3NH3PbI3. J. Phys. Soc. Jpn. 71, 1694 (2002).  https://doi.org/10.1143/JPSJ.71.1694 ADSCrossRefGoogle Scholar
  47. 47.
    H.X. Zhu, J.-M. Liu, First principles calculations of electronic and optical properties of Mo and C co-doped anatase TiO2. Appl. Phys. A 117, 831 (2014).  https://doi.org/10.1007/s00339-014-8433-0 CrossRefGoogle Scholar
  48. 48.
    D.B. Melrose, R.J. Stoneham, Generalized Kramers–Kronig formula for spatially dispersive media. J. Phys. A Math. Gen. 10, L17 (1977). http://stacks.iop.org/0305-4470/10/i=1/a=004
  49. 49.
    Y. Fang, D.J. Cheng, M. Niu, Y.J. Yi, W. Wu, Tailoring the electronic and optical properties of rutile TiO2 by (Nb + Sb, C) codoping from DFT + U calculations. Chem. Phys. Lett. 567, 34 (2013).  https://doi.org/10.1016/j.cplett.2013.02.070 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of New Energy and Electronic EngineeringYancheng Teachers UniversityYanchengChina

Personalised recommendations