Advertisement

Applied Physics A

, 125:71 | Cite as

A dynamic double layer as the origin of the mass-dependent ion acceleration in laser-induced plasmas

  • Alejandro Ojeda-G-P
  • Xiang Yao
  • Nadezhda M. Bulgakova
  • Alexander V. Bulgakov
  • Thomas LippertEmail author
Article
  • 73 Downloads

Abstract

The kinetic energies of the plasma plume species and their control are critical to ensure the high quality of thin films grown by pulsed laser deposition. The maximum kinetic energies of ionic plasma species from different multicomponent materials, CaTiO3, EuAlO3, La0.4Ca0.6MnO3, La0.4Ca0.6Mn0.9Ru0.1O3, and YBa2Cu3O7, have been analysed, revealing a wide range of energies of 100–700 eV. A direct relationship between the maximum kinetic energies and atomic masses has been found: the larger is the mass of an ion, the higher is its energy. This dependence varies with the kind of the ablated material and its slope is changing with laser fluence. The results are explained by the generation of a self-consistent ambipolar electric field in front of the expanding laser plume. The concept of a dynamic double layer has been considered, when heavier ions remain in the ambipolar field for a longer time as compared to lighter ions, thus resulting in stronger acceleration of heavy ions.

Notes

Acknowledgements

Financial supports from the Paul Scherrer Institute and the Swiss National Science Foundation (SNF/Project 00021_143665) are gratefully acknowledged. NMB and AVB acknowledge financial support from the European Regional Development Fund and the state budget of the Czech Republic (Project BIATRI: CZ.02.1.01/0.0/0.0/15_003/0000445), from the Ministry of Education, Youth and Sports (Programs NPU I-Project no. LO1602), and from the Russian Science Foundation (Project 16-19-10506).

References

  1. 1.
    A. Ojeda-G-P, C.W. Schneider, M. Döbeli, T. Lippert, A. Wokaun, J. Appl. Phys. 121, 135306 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    H.H. Andersen, H.L. Bay, in Sputtering by Particle Bombardment I, ed. by R. Behrisch (Springer, Berlin, 1981), p. 145CrossRefGoogle Scholar
  3. 3.
    J. Schou, Appl. Surf. Sci. 255, 5191 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    L. You, N.T. Chua, K. Yao, L. Chen, J. Wang, Phys. Rev. B 80, 024105 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    J.S. Horwitz, K.S. Grabowski, D.B. Chrisey, R.E. Leuchtner, Appl. Phys. Lett. 59, 1565 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    S.I. Anisimov, B.S. Luk’yanchuk, A. Luches, Appl. Surf. Sci. 9698, 24 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McLean, M. Croft, Appl. Phys. Lett. 51, 619 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    A. Sambri, S. Amoruso, X. Wang, F. Miletto Granozio, R. Bruzzese, J. Appl. Phys. 104, 053304 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    A. Ojeda-G-P, C.W. Schneider, T. Lippert, A. Wokaun, J. Appl. Phys. 120, 225301 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    S. Canulescu, E.L. Papadopoulou, D. Anglos, T. Lippert, C.W. Schneider, A. Wokaun, J. Appl. Phys. 105, 063107 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    A. Ojeda G-P, Doctoral thesis, Eidgenössische Technische Hochschule ETH Zürich, Switzerland (2016)Google Scholar
  12. 12.
    B. Thestrup, B. Toftmann, J. Schou, B. Doggett, J.G. Lunney, Appl. Surf. Sci. 197198, 175 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    L. Torrisi, L. Andò, G. Ciavola, S. Gammino, A. Barnà, Rev. SCi. Instrum. 72, 68 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    T. Qian, R.K. Zheng, T. Zhang, T.F. Zhou, W.B. Wu, X.G. Li, Phys. Rev. B 72, 024432 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    J.L. Cohn, J.J. Neumeier, C.P. Popoviciu, K.J. McCellan, Th Leventouri, Phys. Rev. B 56, R8495 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    O. Fabrichnaya, I. Saenko, M.J. Kriegel, J. Seidel, T. Zienert, G. Savinykh, J. Eur. Ceram. Soc. 36, 1455 (2016)CrossRefGoogle Scholar
  17. 17.
    B.F. Woodfield, J.L. Shapiro, R. Stevens, R.L. Putnam, K.B. Helean, A. Navrotsky, J. Chem. Thermodyn. 31, 1573 (1999)CrossRefGoogle Scholar
  18. 18.
    Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens (eds.), Thermal Properties of Matter, Vol. 2. Thermal Conductivity: Nonmetallic solids (IFI-Plenum, New York, 1970)Google Scholar
  19. 19.
    J.D. Doss, Engineers Guide To High Temperature Superconductivity (Wiley, New York, 1989)Google Scholar
  20. 20.
    R.W. Dreyfus, R. Kelly, R.E. Walkup, Nucl. Instrum. Methods Phys. Res. B 23, 557 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    S.V. Starinskiy, Y.G. Shukhov, A.V. Bulgakov, Tech. Phys. Lett. 42, 411 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    A.V. Bulgakov, O.F. Bobrenok, V.I. Kosyakov, Chem. Phys. Lett. 320, 19 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    N.M. Bulgakova, A.V. Bulgakov, O.F. Bobrenok, Phys. Rev. E 62, 5624 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    R. Stoian, D. Ashkenasi, A. Rosenfeld, M. Wittmann, R. Kelly, E.E.B. Campbell, Nucl. Instrum. Methods Phys. Res. B 166, 682 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    R. Stoian, A. Rosenfeld, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell, Appl. Phys. Lett. 85, 694 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    G. Hairapetian, R.L. Stenzel, Phys. Fluids B 3, 899 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    A. Sambri, C. Aruta, E. Di Gennaro, X. Wang, U. Scotti, F. di Uccio, Miletto, Granozio, S. Amoruso, J. Appl. Phys. 119, 125301 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    A.A. Morozov, A.B. Evtushenko, A.V. Bulgakov, Appl. Phys. Lett. 106, 054107 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    D.B. Geohegan, A.A. Puretzky, Appl. Surf. Sci. 9698, 131 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
​corrected ​publication ​2019

Authors and Affiliations

  • Alejandro Ojeda-G-P
    • 1
  • Xiang Yao
    • 1
  • Nadezhda M. Bulgakova
    • 2
    • 3
  • Alexander V. Bulgakov
    • 2
    • 3
  • Thomas Lippert
    • 1
    • 4
    Email author
  1. 1.Research with Neutrons and Muons DivisionPaul Scherrer InstituteVilligen PSISwitzerland
  2. 2.HiLASE CentreInstitute of Physics ASCRDolní BřežanyCzech Republic
  3. 3.S. S. Kutateladze Institute of Thermophysics SB RASNovosibirskRussia
  4. 4.Laboratory of Inorganic Chemistry, Department of Chemistry and Applied BiosciencesETH ZürichZurichSwitzerland

Personalised recommendations