Advertisement

Applied Physics A

, 125:55 | Cite as

Fabrication of perforated polyethylene microfiltration membranes for circulating tumor cells separation by thermal nanoimprint method

  • Feiyi Tang
  • Ziming Shao
  • Mengyang Ni
  • Yushuang Cui
  • Changsheng Yuan
  • Haixiong Ge
Article
  • 45 Downloads

Abstract

Size-based filtration has been proved an efficient and quick approach to separate circulating tumor cells (CTCs) from other blood cells for cancer diagnosis and therapy monitoring. In this work, we proposed a simple, cost efficient and scalable approach to fabricate microporous polyethylene (PE) membranes for CTC filtration by thermal nanoimprint method. PE was selected as the material for the membrane due to its commercially available films with a thickness as thin as ~ 10 µm, which is matched well with the size of the micropores for CTCs and critical to a successful nanoimprint with a low and uniform residual layer. A thermal imprint process with a nickel mold was applied to fabricate periodic microporous PE membranes with a pitch of 20 µm and diameter of 10 µm. The perforated micropores were obtained by a short time O2 plasma-etching to remove the imprint residual layer. This PE membrane microfilter achieved 84% average capture efficiency for lung cancer cells spiked in blood samples.

Notes

Acknowledgements

This work was jointly supported by the National Nature Science Foundation of China (Grant No. 51473076) and the National Key R&D Program of China (Grant No. 2018YFB1105400).

References

  1. 1.
    M. Cristofanilli, G.T. Budd, M.J. Ellis, A. Stopeck, J. Matera, M.C. Miller, J.M. Reuben, G.V. Doyle, W.J. Allard, L.W. Terstappen, D.F. Hayes, N. Engl. J. Med. 351, 781 (2004)CrossRefGoogle Scholar
  2. 2.
    C.L. Chaffer, R.A. Weinberg, Science 331, 1559 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    P. Paterlini-Brechot, N.L. Benali, Cancer Lett. 253, 180 (2007)CrossRefGoogle Scholar
  4. 4.
    Y.T. Kang, I. Doh, Y.H. Cho, Biomed. Microdevices 17, 45 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Nature 450, 1235 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    S. Riethdorf, H. Fritsche, V. Muller, T. Rau, C. Schindlbeck, B. Rack, W. Janni, C. Coith, K. Beck, F. Janicke, S. Jackson, T. Gornet, M. Cristofanilli, K. Pantel, Clin. Cancer Res. 13, 920 (2007)CrossRefGoogle Scholar
  7. 7.
    R. Rosenberg, R. Gertler, J. Friederichs, K. Fuehrer, M. Dahm, R. Phelps, S. Thorban, H. Nekarda, J. R. Siewer, Cytometry 49, 150 (2002)CrossRefGoogle Scholar
  8. 8.
    G. Vona, A. Sabile, M. Louha, V. Sitruk, S. Romana, K. Schütze, F. Capron, D. Franco, M. Pazzagli, M. Vekemans, B. Lacour, C. Bréchot, P. Paterlini-Bréchot, Am. J. Pathol. 156, 57 (2000)CrossRefGoogle Scholar
  9. 9.
    S. Zheng, H. Lin, J.Q. Liu, M. Balic, R. Datar, R.J. Cote, Y.C. Tai, J. Chromatogr. A 1162, 154 (2007)CrossRefGoogle Scholar
  10. 10.
    T. Xu, B. Lu, Y.C. Tai, A. Goldkorn, Cancer Res. 70, 6420 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Hosokawa, T. Yoshikawa, R. Negishi, T. Yoshino, Y. Koh, H. Kenmotsu, T. Naito, T. Takahashi, N. Yamamoto, Y. Kikuhara, H. Kanbara, T. Tanaka, K. Yamaguchi, T. Matsunaga, Anal. Chem. 85, 5692 (2013)CrossRefGoogle Scholar
  12. 12.
    J.A. Hernandez-Castro, K. Li, A. Meunier, D. Juncker, T. Veres, Lab Chip 17, 1960 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Fan, C. Jia, J. Yang, G. Li, H. Mao, Q. Jin, J. Zhao, Biosens. Bioelectro. 71, 380 (2015)CrossRefGoogle Scholar
  14. 14.
    S.C. Ligon-Auer, M. Schwentenwein, C. Gorsche, J. Stampfl, R. Liska, Polym. Chem. 7, 257 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Cui, J. Lu, X. Fu, J. Bian, C. Yuan, H. Ge, Y. Chen, Appl. Phys. A 121, 371 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    H. Schift, S. Bellini, J. Gobrecht, Microelectron. Eng. 83, 873 (2006)CrossRefGoogle Scholar
  17. 17.
    Y. Hirai, S. Harada, S. Isaka, M. Kobayashi, Y. Tanaka, Jpn. J. Appl. Phys. 41, 4186 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    S. Park, Microelectron. Eng. 73, 196 (2004)CrossRefGoogle Scholar
  19. 19.
    S.-W. Youn, H. Goto, M. Takahashi, S. Oyama, Y. Oshinomi, K. Matsutani, R. Maeda, J. Micromech. Microeng. 17, 1402 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    S. Zheng, H.K. Lin, B. Lu, A. Williams, R. Datar, R.J. Cote, Y.C. Tai, Biomed. Microdevices 13, 203 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Feiyi Tang
    • 1
  • Ziming Shao
    • 1
  • Mengyang Ni
    • 1
  • Yushuang Cui
    • 1
  • Changsheng Yuan
    • 1
  • Haixiong Ge
    • 1
  1. 1.Department of Materials Science and Engineering, College of Engineering and Applied SciencesNanjing UniversityNanjingChina

Personalised recommendations