Advertisement

Applied Physics A

, 125:49 | Cite as

Structural and electrical properties of 0.7(BiSmxFe1−xO3)–0.3(PbTiO3) composites

  • Krishna AuromunEmail author
  • Sugato Hajra
  • R. N. P. Choudhary
  • Banarji Behera
Article
  • 42 Downloads

Abstract

The 70% BiFeO3 (BFO) with 30% PbTiO3 composite has attracted attention of many researchers, as it falls under MPB (morphotropic phase boundary) region. The studied composites 0.7(BiSmxFe1−xO3)–0.3(PbTiO3) for x = 0.0, 0.05, 0.10, 0.15, 0.20 were synthesized through the conventional route of solid-state reaction. The crystallization, symmetry (rhombohedral), and structural confirmation of the composites have been made through X-ray diffraction technique. The surface morphology of the natural surface is observed employing scanning electron microscope. The dielectric, impedance, and conductivity study reveals the electrical behavior of the samples. The dielectric permittivity is seen to rise with the increase in doping concentration. The high value of dielectric constant (7390.5) found for 10 wt% doping concentration of samarium. The composites are found to show negative temperature coefficient of resistivity behavior in the temperature range (275–350 °C). The relaxation phenomenon is reflected through impedance plots. From these results, it may be concluded that this material may be used for different high-temperature applications.

Notes

Acknowledgements

KA acknowledges the financial support through DST-Fast Track project scheme for Young Scientist (Project no.: SR/FTP/PS-036/2011), New Delhi, India.

References

  1. 1.
    S. Bhattacharjee. S. Tripathi, D. Pandey, Appl. Phys. Lett. 91, 042903 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)CrossRefGoogle Scholar
  3. 3.
    R.E. Cohen, Nature 358, 136 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    M. De, S. Hajra, R. Tiwari, S. Sahoo, R.N.P. Choudhary, H.S. Tiwari, Ceram. Int. 44, 11792–11797 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Lahmar, S. Habouti, M. Dietze, C.H. Solterbeck, M. Es-Souni, Appl. Phys. Lett. 94, 012903 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, Integrated Ferroelectr. 126, 47–59 (2011)CrossRefGoogle Scholar
  7. 7.
    G. Shirane, H. Hoshino, J. Phys. Soc. Jpn. 6, 265–270 (1951)ADSCrossRefGoogle Scholar
  8. 8.
    M.I. Morozov, N.A. Lomanova, V.V. Gusarov, Russ. J. Gen. Chem. 73, 1676–1680 (2003)CrossRefGoogle Scholar
  9. 9.
    M. Valant, A.K. Axelsson, N. Alford, Chem. Mater. 19, 5431–5436 (2007)CrossRefGoogle Scholar
  10. 10.
    D.I. Khomskii, Physics 2, 20 (2009)CrossRefGoogle Scholar
  11. 11.
    D.I. Khomskii, J. Magn. Mater. 306, 1–8 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    T. Covadonga Correas, Hungria, A. Castro, J. Mater. Chem. 21, 3125 (2011)CrossRefGoogle Scholar
  13. 13.
    D. Kan, C.-J. Cheng, V. Nagarajan, I. Takeuchi, J. Appl. Phys. 110, 014106 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    W.M. Zhu, H.Y. Guo, Z. Ye, Phys. Rev. B 78, 014401 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    A. Satapathy, E. Sinha, J. Appl. Spectrosc. 84, 6 (2018)CrossRefGoogle Scholar
  16. 16.
    T. Badapanda, S. Sarangi, B. Behera, S. Anwar, T.P. Sinha, AIP Conf. Proc. 1591, 46 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    T. Sahu, B. Behera, J. Adv. Dielectr. 7, 1750001 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    E. Gilardi, E. Fabbri, L. Bi, J.L.M. Rupp, T. Lippert, D. Pergolesi, E. Traversa, J. Phys. Chem. C 121(18), 9739–9747 (2017)CrossRefGoogle Scholar
  19. 19.
    S.A. Fedulov, Y.N. Venevtsev, G.S. Zhdanov, G.E. Smazhevskaya, I.S. Rez, Sov. Phys. Crystallogr. 7, 62 (1962)Google Scholar
  20. 20.
    V.V.S.S. Sai Sunder, A. Halliyal, A.M. Umarji, J. Mater. Res. 10, 1301 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    T.L. Burnett, T.P. Comyn, A.J. Bell, J. Cryst. Growth 285, 156–161 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    E. Wu, POWDMULT: An Interactive Powder Diffraction Data Interpretation and Indexing Program, Ver. 2.1, School of Physical Science (Flinders University, Australia, 1989)Google Scholar
  23. 23.
    A. Siddaramanna, V. Kothai, C. Srivastava, R. Ranjan, J. Phys. D, Appl. Phys. 47, 045004 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    T. Sahu, B. Behera, J. Adv. Dielect. 7, 1750001 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    T.P. Comyn, T. Stevenson, M. Al-Jawad, S.L. Turner, R.I. Smith, W.G. Marshall, A.J. Bell, R. Cywinski, Appl. Phys.Lett. 93, 232901 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    National Bureau of Standards (U.S.) Monogragh 25, 4, 34 (1965)Google Scholar
  27. 27.
    A. Patterson, Phys. Rev. 56, 978–982 (1939)ADSCrossRefGoogle Scholar
  28. 28.
    W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, Chem. Sci. 7, 4548–4556 (2016)CrossRefGoogle Scholar
  29. 29.
    R.D. Shannon, Acta Cryst. A 32, 751 (1976)CrossRefGoogle Scholar
  30. 30.
    V.V.S.S. Sai Sunder, A. Halliyal, A.M. Umarji, J. Mater. Res. 10, 1301–1306 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    B. Behera, P. Nayak, R.N.P. Choudhary, Cent. Eur. J. Phys. 6, 289–295 (2008)Google Scholar
  32. 32.
    V. Purohit, R. Padhee, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 5224–5232 (2018)CrossRefGoogle Scholar
  33. 33.
    M.J. Barmi, M. Minakshi, ChemPlusChem, 81, 1–15 (2016)CrossRefGoogle Scholar
  34. 34.
    M.L. Verma, M. Minakshi, N.K. Singh, Electrochim. Acta 137, 497–503 (2014)CrossRefGoogle Scholar
  35. 35.
    N.K. Mohanty, R.N. Pradhan, S.K. Satpathy, A.K. Behera, B. Behera, P. Nayak, J. Mater. Sci. Mater. Electron. 25, 117–123 (2014)CrossRefGoogle Scholar
  36. 36.
    A.K. Jonscher, Nature 267, 673–679 (1977)ADSCrossRefGoogle Scholar
  37. 37.
    P. Nayak, T. Badapanda, A.K. Singh, S. Panigrahi, RSC Adv. 7, 16319 (2017)CrossRefGoogle Scholar
  38. 38.
    R.K. Panda, R. Muduli, S.K. Kar, D. Behera, J. Alloy. Compd. 615, 899–905 (2014)CrossRefGoogle Scholar
  39. 39.
    S. Nath, S.K. Barik, S. Hajra, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 12251–12257 (2018)CrossRefGoogle Scholar
  40. 40.
    S.K. Satpathy, N.K. Mohanty, A.K. Behera, B. Behera, P. Nayak, Electrical conductivity of Gd doped BiFeO3–PbZrO3 composite. Front. Mater. Sci. 7(3), 295–301 (2013)CrossRefGoogle Scholar
  41. 41.
    E. Mostafavi, A. Ataie, M. Ahmadzadeh, M. Palizdar, T.P. Comyn, A.J. Bell, Mater. Chem. Phys. 162, 106–112 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Krishna Auromun
    • 1
    Email author
  • Sugato Hajra
    • 2
  • R. N. P. Choudhary
    • 1
  • Banarji Behera
    • 3
  1. 1.Department of PhysicsSiksha ‘O’ Anusandha (Deemed to be University)BhubaneswarIndia
  2. 2.Department of Electronics and InstrumentationSiksha’O’ Anusandha (Deemed to be University)BhubaneswarIndia
  3. 3.Material Research Laboratory, School of PhysicsSambalpur UniversityBurlaIndia

Personalised recommendations