Applied Physics A

, 125:48 | Cite as

Synthesis of Fe:MgAl2O4 nanopowders by laser ablation

  • Vladimir V. Osipov
  • Vladimir I. Solomonov
  • Vyacheslav V. PlatonovEmail author
  • Egor V. Tikhonov
  • Anatoly I. Medvedev


The features of production of Fe:MgAl2O4 nanopowders by evaporation of targets made from a simple oxide mixture (Fe2O3, MgO, Al2O3) by repetitively pulsed CO2 laser radiation with I = 1.8 MW/cm2 peak power density and Paver = 600 W average radiation power as well as by ytterbium fiber laser radiation (I = 0.4 MW/cm2 and Paver = 300 W) were studied. It was demonstrated that the nanopowder produced with the use of the CO2 laser has the specific surface of 56 m2/g and contains two crystalline phases, i.e. MgAl2O4 (98.2 wt%) and MgO (1.8 wt%), with Fe ions dissolved in them. At the average radiation power of 600 W, the output of the nanopowder was 16 g/h. For the nanopowder produced using the ytterbium fiber laser, a twofold increase of the specific surface (105 m2/g) was observed. This nanopowder contains four phases, i.e. MgAl2O4 (67.5 wt%), γ-Al2O3 (24.8 wt%), Fe3O4 (3.2 wt%) and MgO (4.5 wt%). In this case, the output of the nanopowder was 2.7 g/h due to high transparency of initial target and the formation of a “forest-like” array of 4–5-mm-high spikes covered with a semitransparent melt layer. Significant differences in the phase compositions of the nanopowders obtained using these lasers are associated with a higher rate of the laser plume cooling for the ytterbium fiber laser.



The authors are grateful to V.V. Lisenkov for useful discussions of the research, to T.M. Demina for measuring the specific surface of the nanopowders, to O.R. Timoshenkova and A.M. Murzakaev for TEM imaging of the nanoparticles, to V.A. Shitov and K.E. Lukyashin for fabrication of the targets, and to M.S. Naumova for help with experiments and analysis of results. The work was carried out within the framework of the State task project No. 0389-2016-0002 with partial financial support of the Russian Foundation for Basic Research under project No. 17-08-00064 A.


  1. 1.
    L.D. DeLoach, R.H. Page, C.D. Wilke, S.A. Payne, W.F. Krupke, J. Quant. Electr. 32(6), 885 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    J.J. Adams, C. Bibeau, R.H. Page, D.M. Krol, L.H. Furu, S.A. Payne, 4.0–4.5 µm lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material. Opt. Lett. 24(23), 1720–1722 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    M. Rubat du Merac, H.-J. Kleebe, M.M. Muller, I.E. Reimanis, Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel. J. Am. Ceram. Soc. 96(11), 3341–3365 (2013)CrossRefGoogle Scholar
  4. 4.
    R.K. Sackuvich, J.M. Peppers, N.-S. Myoung, V.V. Badikov, V.V. Fedorov, S.B. Mirov, Spectroscopic characterization of Ti3+:AgGaS2 and Fe2+:MgAlO4 crystals for mid-IR laser applications. Solid State Lasers XXI Technol. Devices Proc. SPIE V 8235(1–6), 823520 (2012). CrossRefGoogle Scholar
  5. 5.
    A.E. Dormidontov, K.N. Firsov, E.M. Gavrishuk, V.B. Ikonnikov, S.Yu. Kazantsev, I.G. Kononov, T.V. Kotereva, D.V. Savin, N.A. Timofeeva, High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy. Appl. Phys. B 122(8), 211 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    S.G. Garanin, N.N. Rukavishnikov, A.V. Dmitryuk, A.A. Zhilin, M.D. Mikhălov, Laser ceramic. 1. Production methods. J. Opt. Technol. 77(9), 565–576, 2010CrossRefGoogle Scholar
  7. 7.
    V.V. Osipov, Yu.A. Kotov, M.G. Ivanov, O.M. Samatov, V.V. Lisenkov, V.V. Platonov, A.M. Murzakaev, A.I. Medvedev, E.I. Azarkevich, Laser synthesis of nanopowders. Laser Phys. 16(1), 116–125 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    V.V. Osipov, V.V. Platonov, V.A. Shitov, R.N. Maksimov, High-transparent ceramic prepared based on nanopowders synthesized in a laser torch. Part I. prepared features. Photonics 67(7), 52–70 (2017)Google Scholar
  9. 9.
    S.N. Bagayev, V.V. Osipov, S.M. Vatnik, V.A. Shitov, I.A. Vedin, V.V. Platonov, I.Sh. Steinberg, R.N. Maksimov, Ho:YAG transparent ceramics based on nanopowders produced by laser ablation method: fabrication, optical properties, and laser performance. Opt. Mater. 50, 47–51 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    C. Wenish, H.-D. Kurland, J. Grabow, F.A. Müller, Europium (III)-doped MgAl2O4 spinel nanophosphor prepared by CO2 laser co-vaporation. J. Am. Ceram. Soc. 99(8), 2561–2564 (2016)CrossRefGoogle Scholar
  11. 11.
    I.V. Beketov, A.I. Madvedev, O.M. Samatov, A.V. Spirina, K.I. Shabanova, Synthesis and luminescent properties of MgAl2O4:Eu nanopowders. J. Alloys Compd. 586, 472–475 (2014)CrossRefGoogle Scholar
  12. 12.
    V.V. Osipov, V.V. Lisenkov, V.V. Platonov, A.N. Orlov, A.V. Podkin, I.A. Savvin, Effect of pulses from a high-power ytterbium fiber laser on a material with a nonuniform refractive index. I. Irradiation of yttrium oxide targets. Techn. Phys. 59(5), 716–723 (2014) (The Russian Journal of Applied Physics)ADSCrossRefGoogle Scholar
  13. 13.
    V.V. Osipov, V.V. Lisenkov, V.V. Platonov, A.N. Orlov, A.V. Podkin, I.A. Savvin, Effect of pulses from a hign-power ytterbium fiber laser on a material with a nonuniform refractive index. II. Production and parameters of Nd:Y2O3 nanopowders. Techn. Phys. 59(5), 724–732 (2014) (The Russian Journal of Applied Physics)ADSCrossRefGoogle Scholar
  14. 14.
    V.V. Osipov, V.V. Platonov, V.V. Lisenkov, Laser Ablation Synthesis and Properties of Nanocrystalline Oxide Powders, ed. by M. Aliofkhazraei. Handbook of Nanoparticles (Springer International Publishing, Switzerland, 2015), p. 1376. CrossRefGoogle Scholar
  15. 15.
    V.I. Solomonov, S.G. Michailov, A.I. Lipchak, V.V. Osipov, V.G. Shpak, S.A. Shunailov, M.I. Yalandin, M.R. Ulmaskulov, CLAVI pulsed cathodeluminescence spectroscope. Laser Phys. 16(1), 126–129 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    V.V. Osipov, V.V. Platonov, V.V. Lisenkov, E.V. Tikhonov, A.V. Podkin, Study of nanoparticle production from yttrium oxide by pulse periodic radiation of ytterbium fibre laser. Appl. Phys. A 124, 3 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    V.V. Osipov, V.V. Platonov, V.V. Lisenkov, Laser ablation plume dynamics in nanoparticle synthesis. Quantum Electron. 39(6), 541–546 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    V.V. Osipov, V.I. Solomonov, V.V. Platonov, J.F. Snigireva, V.V. Lisenkov, M.G. Ivanov, Dynamic and spectroscopy of the laser plume from solid targets. Laser Phys. 16(1), 134–145 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    V.V. Osipov, V.I. Solomonov, A.V. Spirina, V.V. Lisenkov, V.V. Platonov, A.V. Podkin, Spectroscopy of a laser plume arising under radiation of a ytterbium fiber laser. Opt. Spectrosc. 122(1), 155–161 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    D.C. Harris, F. Linda, R. Johnson, T. Seaver, G. Lewis, M. Turri, D.E. Bass, D.E. Zelmon, N. Haynes, Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 µm wavelengths and comparison with sapphire. Opt. Eng. 52, 8 (2013) (article number 087113)CrossRefGoogle Scholar
  21. 21.
    S. Zeidler, T. Posh, H. Mutschke, H. Richter, O. Wehrhan, Near-infrared absorbtion properties of oxygen-rich stardust analogs. The influence of coloring metal ions. Astron. Astrophys. 526, A68 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    V.V. Osipov, V.V. Lisenkov, V.V. Platonov, E.V. Tikhonov, Processes of interaction of laser radiation with porous transparent materials during their ablation. Quantum Electron. 48(3), 235–243 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    A.M. Prokhorov, V.I. Konov, I. Ursu, I.N. Michaelsku, Interaction of Laser Radiation with Metals (Nauka, Moscow, 1988), p. 537Google Scholar
  24. 24.
    I. Prigogine, R. Defay, Chemical Thermodynamics (Nauka, Novosibirsk, 1966)Google Scholar
  25. 25.
    G.V. Samsonov, A.L. Borisova, T.G. Zhidkova, Physicochemical Properties of Oxides: Handbook (Metallurgiya, Moscow, 1978)Google Scholar
  26. 26.
    A.C. Sutorik, G. Gilde, J.J. Swab, C. Cooper, R. Gamble, E. Shanholtz, Transparent solid solution magnesium aluminate spinel polycrystalline ceramic with the alumina-rich composition MgO:1.2Al2O3. J. Am. Ceram. Soc. 95(2), 636–643 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vladimir V. Osipov
    • 1
  • Vladimir I. Solomonov
    • 1
  • Vyacheslav V. Platonov
    • 1
    Email author
  • Egor V. Tikhonov
    • 1
  • Anatoly I. Medvedev
    • 1
  1. 1.Institute of Electrophysics Ural Division of RASYekaterinburgRussia

Personalised recommendations