Applied Physics A

, 125:37 | Cite as

Structural, spectral, magnetic, and electrical properties of Gd–Co-co-substituted M-type Ca–Sr hexaferrites synthesized by the ceramic method

  • Yujie YangEmail author
  • Fanhou Wang
  • Juxiang Shao
  • Duohui Huang
  • A. V. Trukhanov
  • S. V. Trukhanov


Gd–Co-co-substituted M-type Ca–Sr hexaferrites with nominal compositions Ca0.40Sr0.60−xGdxFe12.00−xCoxO19 (0.00 ≤ x ≤ 0.32) were prepared using the standard ceramic method. The particle size of obtained hexaferrite powders is between 2 and 5 µm. These hexaferrites were characterized by thermal analyzer (TG-DSC), X-ray diffractometer (XRD), Fourier transformer infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM), and resistivity testing system. XRD patterns showed that the single M-type hexaferrite phase was obtained only if Gd–Co content (x) ≤ 0.16. FE-SEM micrographs indicated that the grains were platelet-like shapes. The saturation magnetization (Ms) and remanent magnetization (Mr) decreased with increasing Gd–Co content (x) from 0.00 to 0.32. The coercivity (Hc) first increased with Gd–Co content (x) from 0.00 to 0.24, and then decreased when Gd–Co content (x) ≥ 0.24. The DC electrical resistivity decreased with increasing Gd–Co content (x) from 0.00 to 0.32.



This work was supported by the National Natural Science Foundation of China (nos. 51272003 and 51472004), the Scientific Research Fund of SiChuan Provincial Education Department (nos. 13ZA0918, 14ZA0267, and 16ZA0330), the Major Project of Yibin City of China (nos. 2012SF034, 2016GY025, and 2016 QD002), Scientific Research Key Project of Yibin University (no. 2015QD13), and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University (no. JSWL2015KFZ04). This work was financially supported by the Anhui University Collaborative Innovation Research Center for “weak signal sensing materials and device integration” (Open Project in 2016). This work was financially supported by the Natural Science Foundation of China (Grant 51301152). This work was carried out with a financial support in part from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” among the leading world scientific and educational centers (nos. П02-2017-2-4, К3-2017-059). In SUSU, this work was supported by Act 211 Government of the Russian Federation, contract no. 02.A03.21.0011. In addition, the work was partially supported by the Ministry of Education and Science of the Russian Federation (10.9639.2017/8.9). Government task in SUSU 5.5523.2017/8.9.


  1. 1.
    T.T. Li, Y. Li, R.N. Wu, X.C. Fang, S.B. Su, A.L. Xia, C.G. Jin, X.G. Liu, A solution for the preparation of hexagonal M-type SrFe12O19 ferrite using egg-white: structural and magnetic properties. J. Magn. Magn. Mater. 393, 325 (2015)CrossRefADSGoogle Scholar
  2. 2.
    A. Baykal, H. Güngüneș, H. Sözeri, I. Md.Amir, S. Auwal, S.E. Asiri, A. Shirsath, A.D. Korkmaz, Magnetic properties and Mössbauer spectroscopy of Cu-Mn substituted SrFe12O19 hexaferrites. Ceram. Int. 43, 15486 (2017)CrossRefGoogle Scholar
  3. 3.
    R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater Sci. 57, 1191 (2012)CrossRefGoogle Scholar
  4. 4.
    A.A. Nourbakhsh, A. Vahedi, A. Nemati, M. Noorbakhsh, S.N. Mirsatari, M. Shaygan, K.J.D. Mackenzie, Optimization of the magnetic properties and microstructure of Co2+-La3+ substituted strontium hexaferrite by varying the production parameters. Ceram. Int. 40, 5675 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Sharbati, G.R. Amiri, Magnetic, microwave absorption and structural properties of Mg-Ti added Ca-M hexaferrite nanoparticles. J. Mater. Sci. Mater. Electron. 29, 1118 (2018)CrossRefGoogle Scholar
  6. 6.
    C. Lei, S. Tang, Y. Du, Synthesis of aligned La3+-substituted Sr-ferrites via molten salt assisted sintering and their magnetic properties. Ceram. Int. 42, 15511 (2016)CrossRefGoogle Scholar
  7. 7.
    Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101 (2016)CrossRefADSGoogle Scholar
  8. 8.
    W. Abbas, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, M.A. Khan, M.N. Akhtar, M. Ahmad, Structural and magnetic behavior of Pr-substituted M-type hexagonal ferrites synthesized by sol-gel autocombustion for a variety of applications. J. Magn. Magn. Mater. 374, 187 (2015)CrossRefADSGoogle Scholar
  9. 9.
    A. Thakur, R.R. Singh, P.B. Barman, Synthesis and characterizations of Nd3+ doped SrFe12O19. Mater. Chem. Phys. 141, 562 (2013)CrossRefGoogle Scholar
  10. 10.
    L. Lechevallier, J.M. Le Breton, A. Morel, J. Teillet, Structural and magnetic properties of Sr1−xSmxFe12O19 hexagonal ferrites synthesised by a ceramic process. J. Alloys Compd. 359, 310 (2003)CrossRefGoogle Scholar
  11. 11.
    G. Litsardakis, I. Manolakis, A.C. Stergiou, C. Serletis, K.G. Efthimiadis, New Dy-substituted Ba hexaferrites with high coercivity. IEEE Trans. Magn. 44, 4222 (2008)CrossRefADSGoogle Scholar
  12. 12.
    G. Litsardakis, I. Manolakis, C. Serletis, K.G. Efthimiadis, High coercivity Gd-substituted Ba hexaferrites, prepared by chemical coprecipitation. J. Appl. Phys. 103, 07E501 (2008)CrossRefGoogle Scholar
  13. 13.
    G. Murtaza Rai, M.A. Iqbal, K.T. Kubra, Effect of Ho3+ substitutions on the structural and magnetic properties of BaFe12O19 hexaferrites. J. Alloys Compd. 495, 229 (2010)CrossRefGoogle Scholar
  14. 14.
    A. Shayan, M. Abdellahi, F. Shahmohammadian, S. Jabbarzare, A. Khandan, H. Ghayour, Mechanochemically aided sintering process for the synthesis of barium ferrite: effect of aluminium substitution on microstructure, magnetic properties and microwave absorption. J. Alloys Compd. 708, 538 (2017)CrossRefGoogle Scholar
  15. 15.
    I.A. Auwal, H. Güngüneş, A. Baykal, S. Güner, S.E. Shirsath, M. Sertkol, Structural, morphological, optical, cation distribution and Mössbauer analysis of Bi3+ substituted strontium hexaferrite. Ceram. Int. 42, 8627 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Katlakunta, S.S. Meena, S. Sirnath, M. Bououdina, R. Sandhya, K. Praveena, Improved magnetic properties of Cr3 doped SrFe12O19 via microwave hydrothermal route. Mater. Res. Bull. 63, 58 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Asghar, M. Anis-ur-Rehman, Structural, dielectric and magnetic properties of Cr–Zn doped strontium hexa-ferrites for high frequency applications. J. Alloys Compd. 526, 85 (2012)CrossRefGoogle Scholar
  18. 18.
    T.P. Xie, L.J. Xu, C.L. Liu, Synthesis and properties of composite magnetic material SrCoxFe12–xO19 (x = 0–0.3). Powder Technol. 232, 87 (2012)CrossRefGoogle Scholar
  19. 19.
    A. Baykal, I.A. Auwal, S. Güner, H. Sözeri, Magnetic and optical properties of Zn2+ ion substituted barium hexaferrites. J. Magn. Magn. Mater. 430, 29 (2017)CrossRefADSGoogle Scholar
  20. 20.
    S. Vadivelan, N. Victor, Jaya, Investigation of magnetic and structural properties of copper substituted barium ferrite powder particles via co-precipitation. Results Phys. 6, 843 (2016)CrossRefADSGoogle Scholar
  21. 21.
    I. Bsoul, S.H. Mahood, Magnetic and structural properties of BaFe12–xGaxO19 nanoparticles. J. Alloys Compd. 489, 110 (2010)CrossRefGoogle Scholar
  22. 22.
    W. Li, X. Qiao, M. Li, T. Liu, H.X. Peng, La and Co substituted M-type barium ferrites processed by sol-gel combustion synthesis. Mater. Res. Bull. 48, 4449 (2013)CrossRefGoogle Scholar
  23. 23.
    Y.J. Yang, X.S. Liu, Microtructure and magnetic properties of La-Cu doped M-type strontium ferrites prepared by ceramic process. Mater. Technol. 29, 232 (2014)CrossRefGoogle Scholar
  24. 24.
    M.J. Iqbal, S. Farooq, Impact of Pr-Ni substitution on the electrical and magnetic properties of chemically derived nanosized hexaferrites. J. Alloys Compd. 505, 560 (2010)CrossRefGoogle Scholar
  25. 25.
    C. Herme, S.E. Jacobo, P.G. Bercoff, B. Arcondo, Mössbauer analysis of Nd-Co M-type strontium hexaferrite with different iron content. Hyperfine Interact. 195, 205 (2010)CrossRefADSGoogle Scholar
  26. 26.
    G. Litsardakis, I. Manolakis, K. Efthimiadis, Structural and magnetic properties of barium hexaferrites with Gd-Co substitution. J. Alloys Compd. 427, 194 (2007)CrossRefGoogle Scholar
  27. 27.
    H.M. Khan, M.U. Islam, Y.B. Xu, M.A. Iqbal, I. Ali, Structural and magnetic properties of TbZn-substituted calcium strontium M-type nano-structured hexa-ferrites. J. Alloys Compd. 589, 258 (2014)CrossRefGoogle Scholar
  28. 28.
    Z. Wu, R.N. Zhang, Z.W. Yu, L.W. Shan, L.M. Dong, X.Y. Zhang, The magnetic properties of permanent strontium ferrite doped with rare-earth by chemical co-precipitation method. Ferroelectrics 529, 120 (2018)CrossRefGoogle Scholar
  29. 29.
    M.J. Iqbal, M.N. Ashiq, Physical and electrical properties of Zr-Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383 (2008)CrossRefGoogle Scholar
  30. 30.
    Z.H. Hua, S.Z. Li, Z.D. Han, D.H. Wang, M. Lu, W. Zhong, B.X. Gu, Y.W. Du, The effec of La-Zn substitution on the microstructure and magnetic properties of the barium ferrites. Mater. Sci. Eng. A 448, 326 (2007)CrossRefGoogle Scholar
  31. 31.
    V.C. Chavan, S.E. Shisath, M.L. Mane, R.H. Kadam, S.S. More, Transformation of hexagonal to mixed spinel crystal structure and magnetic properties of Co2+ substituted BaFe12O19. J. Magn. Magn. Mater. 398, 32 (2016)CrossRefADSGoogle Scholar
  32. 32.
    D. Makovec, D. Primc, S. Šturm, A. Kodre, D. Hanžel, M. Drofenik, Structural properties of ultrafine Ba-hexaferrite nanoparticles. J. Solid State Chem. 196, 63 (2012)CrossRefADSGoogle Scholar
  33. 33.
    C. Serletis, G. Litsardakis, E. Pavlidou, K.G. Efthimiadis, Magnetic properties of co-precipitated hexaferrite powders with Sm-Co substitutions optimized with the molten flux method. Phys. B 525, 78 (2017)CrossRefADSGoogle Scholar
  34. 34.
    C.-C. Huang, A.-H. Jiang, C.-H. Liou, Y.-C. Wang, C.-P. Lee, T.-Y. Hung, C.-C. Shaw, Y.-H. Hung, M.-F. Kuo, C.-H. Cheng, Magnetic properties enhancement of cobalt-free M-type strontium hexagonal ferrites by CaCO3 and SiO2 addition. Intermetallics 89, 111 (2017)CrossRefGoogle Scholar
  35. 35.
    S.B. Galvão, A.C. Lima, S.N. de Medeiros, J.M. Soares, C.A. Paskocimas, The effect of the morphology on the magnetic properties of barium hexaferrite synthesized by Pechini method. Mater. Lett. 115, 38 (2014)CrossRefGoogle Scholar
  36. 36.
    B.H. Bhat, Effect of magnesium substitution on the structural and magnetic properties of M-type strontium hexaferrite. Sci. Eng. Appl. 2, 177 (2017)Google Scholar
  37. 37.
    P. Xu, X.J. Han, H.T. Zhao, Z.H. Liang, J.F. Wang, Effect of stoichiometry on the phase formation and magnetic properties of BaFe12O19 nanoparticles by reverse micelle technique. Mater. Lett. 62, 1305 (2008)CrossRefGoogle Scholar
  38. 38.
    M. Anis-ur-Rehman, G. Asghar, Variation in structural and dielectric properties of co-precipitated nanoparticles strontium ferrites due to value of pH. J. Alloys Compd. 509, 435 (2011)CrossRefGoogle Scholar
  39. 39.
    S. Güner, I.A. Auwal, A. Baykal, H. Sözeri, Synthesis, characterization and magneto optical properties of BaBixLaxYxFe12−3xO19 (0.0 ≤ x ≤ 0.33) hexaferrites. J. Magn. Magn. Mater. 416, 261 (2016)CrossRefADSGoogle Scholar
  40. 40.
    V.V. Soman, V.M. Nanoti, D.K. Kulkarni, Dielectric and magnetic properties of Mg-Ti substituted barium hexaferrite. Ceram. Int. 39, 5713 (2013)CrossRefGoogle Scholar
  41. 41.
    M.M.L. Sonia, S. Anand, V. Maria Vinosel, M. Asisi Janifer, S. Pauline, A. Manikandan, Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2–xO4 ferrite nano-crystallites synthesized by sol-gel route. J. Magn. Magn. Mater. 466, 238 (2018)CrossRefADSGoogle Scholar
  42. 42.
    S. Anand, A. Persis Amaliya, M. Asisi Janifer, S. Pauline, Structural, morphological and dielectric studies of zirconium substituted CoFe2O4 nanoparticles. Modern Electron. Mater. 3, 168 (2017)CrossRefGoogle Scholar
  43. 43.
    M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, Effect of lattice strain on structural, magnetic and dielectric properties of sol–gel synthesized nanocrystalline Ce3+ substituted nickel ferrite. J. Mater. Sci. Mater. Electron. 29, 15006 (2018)CrossRefGoogle Scholar
  44. 44.
    S. Singhal, T. Namgyal, J. Singh, K. Chandra, S. Bansal, A comparative study on the magnetic properties of MFe12O19 and MAlFe11O19 (M = Sr, Ba and Pb) hexaferrites with different morphologies. Ceram. Int. 37, 1833 (2011)CrossRefGoogle Scholar
  45. 45.
    Z. Mosleh, P. Kameli, M. Ranjbar, H. Salamati, Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticles. Ceram. Int. 40, 7279 (2014)CrossRefGoogle Scholar
  46. 46.
    A. Baniasadi, A. Ghasemi, A. Nemati, M.A. Ghadikolaei, E. Paimozd, Effect of Ti-Zn substitution structural, magnetic and microwave absorption characteristics of strontium hexaferrites. J. Alloys Compd. 583, 325 (2014)CrossRefGoogle Scholar
  47. 47.
    M.A. Khan, H. Ullah, M. Junaid, M.K. Sharif, M.F. Alboud, M.F. Warsi, S. Haider, Structural, magnetic and dielectric properties of Yb3+ doped BaCo-X hexagonal nanoferrites. J. Alloys Compd. 695, 3674 (2017)CrossRefGoogle Scholar
  48. 48.
    R. Vinaykumar, R. Mazumder, J. Bera, Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol-gel combustion and solid state route. J. Magn. Magn. Mater. 429, 359 (2017)CrossRefADSGoogle Scholar
  49. 49.
    J.H. Luo, Structural and magnetic properties of Nd-substituted strontium ferrite nanoparticles. Mater. Lett. 80, 162 (2012)CrossRefGoogle Scholar
  50. 50.
    Z. Wu, R. Zhang, Z. Yu, L. Shan, L. Dong, X. Zhang, Study on preparation and magnetic properties of SrGdxFe12–xCuxO19 (0.00 ≤ x ≤ 0.20) strontium ferrite prepared by solid phase method. Ferroelectrics 523, 82 (2018)CrossRefGoogle Scholar
  51. 51.
    L. Lechevallier, J.M. Le Breton, Substitution effects in M-type strontium hexaferrite powders investigated by Mössbauer spectrometry. J. Magn. Magn. Mater. 290–291, 1237 (2002)Google Scholar
  52. 52.
    J.M. Le Breton, J. Teillet, G. Wiesinger, A. Morel. F. kools, P. Tenaud, Mössbauer investigation of Sr-Fe-O hexaferrites with La-Co addition. IEEE Trans. Magn. 38, 2952 (2002)CrossRefADSGoogle Scholar
  53. 53.
    L. Lechevallier, J.M. Le Breton, J. Teillet, A. Morel. F. kools, P. Tenaud, Mössbauer investigation of Sr1–xLaxFe12–yCoyO19 ferrites. Phys. B 327, 135 (2003)CrossRefADSGoogle Scholar
  54. 54.
    J. Singh, C. Singh, D. Kaur, H. Zaki, I.A. Abdel-Latif, S.B. Narang, R. Jotania, S. Mishra, R. Joshi, P. Dhruv, M. Ghimiree, S.E. Shirsath, S.S. Meena, Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co2+-Al3+ doped M-type Ba-Sr hexaferrites synthesized by a ceramic method. J. Alloys Compd. 695, 1112 (2017)CrossRefGoogle Scholar
  55. 55.
    M. Md. Amir, S. Geleri, A. Güner, H. Baykal, Sözeri, Magneto optical properties of FeBxFe2–xO4 nanoparticles. J. Inorg. Organomet. Polym. 25, 1111 (2015)CrossRefGoogle Scholar
  56. 56.
    F.L. Wei, M. Lu, Z. Yang, The temperature dependence of magnetic properties of of Zn-Ti substituted Ba-ferrite particles for magnetic recording. J. Magn. Magn. Mater. 191, 249 (1999)CrossRefADSGoogle Scholar
  57. 57.
    M. El-Saadawy, DC conductivity for hexaferrites of the Co2−xCuxBaFe16O27 system. J. Magn. Magn. Mater. 219, 69 (2000)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yujie Yang
    • 1
    Email author
  • Fanhou Wang
    • 1
  • Juxiang Shao
    • 1
  • Duohui Huang
    • 1
  • A. V. Trukhanov
    • 2
    • 3
    • 4
  • S. V. Trukhanov
    • 2
    • 3
    • 4
  1. 1.Computational Physics Key Laboratory of Sichuan Province, School of Physics and Electronic EngineeringYibin UniversityYibinPeople’s Republic of China
  2. 2.National University of Science and Technology MISISMoscowRussia
  3. 3.SSPA “Scientific and practical materials research centre of the NAS of Belarus”MinskBelarus
  4. 4.South Ural State UniversityChelyabinskRussia

Personalised recommendations