Structural, spectral, magnetic, and electrical properties of Gd–Co-co-substituted M-type Ca–Sr hexaferrites synthesized by the ceramic method
- 58 Downloads
Abstract
Gd–Co-co-substituted M-type Ca–Sr hexaferrites with nominal compositions Ca0.40Sr0.60−xGdxFe12.00−xCoxO19 (0.00 ≤ x ≤ 0.32) were prepared using the standard ceramic method. The particle size of obtained hexaferrite powders is between 2 and 5 µm. These hexaferrites were characterized by thermal analyzer (TG-DSC), X-ray diffractometer (XRD), Fourier transformer infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM), and resistivity testing system. XRD patterns showed that the single M-type hexaferrite phase was obtained only if Gd–Co content (x) ≤ 0.16. FE-SEM micrographs indicated that the grains were platelet-like shapes. The saturation magnetization (Ms) and remanent magnetization (Mr) decreased with increasing Gd–Co content (x) from 0.00 to 0.32. The coercivity (Hc) first increased with Gd–Co content (x) from 0.00 to 0.24, and then decreased when Gd–Co content (x) ≥ 0.24. The DC electrical resistivity decreased with increasing Gd–Co content (x) from 0.00 to 0.32.
Notes
Acknowledgements
This work was supported by the National Natural Science Foundation of China (nos. 51272003 and 51472004), the Scientific Research Fund of SiChuan Provincial Education Department (nos. 13ZA0918, 14ZA0267, and 16ZA0330), the Major Project of Yibin City of China (nos. 2012SF034, 2016GY025, and 2016 QD002), Scientific Research Key Project of Yibin University (no. 2015QD13), and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University (no. JSWL2015KFZ04). This work was financially supported by the Anhui University Collaborative Innovation Research Center for “weak signal sensing materials and device integration” (Open Project in 2016). This work was financially supported by the Natural Science Foundation of China (Grant 51301152). This work was carried out with a financial support in part from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” among the leading world scientific and educational centers (nos. П02-2017-2-4, К3-2017-059). In SUSU, this work was supported by Act 211 Government of the Russian Federation, contract no. 02.A03.21.0011. In addition, the work was partially supported by the Ministry of Education and Science of the Russian Federation (10.9639.2017/8.9). Government task in SUSU 5.5523.2017/8.9.
References
- 1.T.T. Li, Y. Li, R.N. Wu, X.C. Fang, S.B. Su, A.L. Xia, C.G. Jin, X.G. Liu, A solution for the preparation of hexagonal M-type SrFe12O19 ferrite using egg-white: structural and magnetic properties. J. Magn. Magn. Mater. 393, 325 (2015)CrossRefADSGoogle Scholar
- 2.A. Baykal, H. Güngüneș, H. Sözeri, I. Md.Amir, S. Auwal, S.E. Asiri, A. Shirsath, A.D. Korkmaz, Magnetic properties and Mössbauer spectroscopy of Cu-Mn substituted SrFe12O19 hexaferrites. Ceram. Int. 43, 15486 (2017)CrossRefGoogle Scholar
- 3.R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater Sci. 57, 1191 (2012)CrossRefGoogle Scholar
- 4.A.A. Nourbakhsh, A. Vahedi, A. Nemati, M. Noorbakhsh, S.N. Mirsatari, M. Shaygan, K.J.D. Mackenzie, Optimization of the magnetic properties and microstructure of Co2+-La3+ substituted strontium hexaferrite by varying the production parameters. Ceram. Int. 40, 5675 (2014)CrossRefGoogle Scholar
- 5.A. Sharbati, G.R. Amiri, Magnetic, microwave absorption and structural properties of Mg-Ti added Ca-M hexaferrite nanoparticles. J. Mater. Sci. Mater. Electron. 29, 1118 (2018)CrossRefGoogle Scholar
- 6.C. Lei, S. Tang, Y. Du, Synthesis of aligned La3+-substituted Sr-ferrites via molten salt assisted sintering and their magnetic properties. Ceram. Int. 42, 15511 (2016)CrossRefGoogle Scholar
- 7.Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101 (2016)CrossRefADSGoogle Scholar
- 8.W. Abbas, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, M.A. Khan, M.N. Akhtar, M. Ahmad, Structural and magnetic behavior of Pr-substituted M-type hexagonal ferrites synthesized by sol-gel autocombustion for a variety of applications. J. Magn. Magn. Mater. 374, 187 (2015)CrossRefADSGoogle Scholar
- 9.A. Thakur, R.R. Singh, P.B. Barman, Synthesis and characterizations of Nd3+ doped SrFe12O19. Mater. Chem. Phys. 141, 562 (2013)CrossRefGoogle Scholar
- 10.L. Lechevallier, J.M. Le Breton, A. Morel, J. Teillet, Structural and magnetic properties of Sr1−xSmxFe12O19 hexagonal ferrites synthesised by a ceramic process. J. Alloys Compd. 359, 310 (2003)CrossRefGoogle Scholar
- 11.G. Litsardakis, I. Manolakis, A.C. Stergiou, C. Serletis, K.G. Efthimiadis, New Dy-substituted Ba hexaferrites with high coercivity. IEEE Trans. Magn. 44, 4222 (2008)CrossRefADSGoogle Scholar
- 12.G. Litsardakis, I. Manolakis, C. Serletis, K.G. Efthimiadis, High coercivity Gd-substituted Ba hexaferrites, prepared by chemical coprecipitation. J. Appl. Phys. 103, 07E501 (2008)CrossRefGoogle Scholar
- 13.G. Murtaza Rai, M.A. Iqbal, K.T. Kubra, Effect of Ho3+ substitutions on the structural and magnetic properties of BaFe12O19 hexaferrites. J. Alloys Compd. 495, 229 (2010)CrossRefGoogle Scholar
- 14.A. Shayan, M. Abdellahi, F. Shahmohammadian, S. Jabbarzare, A. Khandan, H. Ghayour, Mechanochemically aided sintering process for the synthesis of barium ferrite: effect of aluminium substitution on microstructure, magnetic properties and microwave absorption. J. Alloys Compd. 708, 538 (2017)CrossRefGoogle Scholar
- 15.I.A. Auwal, H. Güngüneş, A. Baykal, S. Güner, S.E. Shirsath, M. Sertkol, Structural, morphological, optical, cation distribution and Mössbauer analysis of Bi3+ substituted strontium hexaferrite. Ceram. Int. 42, 8627 (2016)CrossRefGoogle Scholar
- 16.S. Katlakunta, S.S. Meena, S. Sirnath, M. Bououdina, R. Sandhya, K. Praveena, Improved magnetic properties of Cr3 doped SrFe12O19 via microwave hydrothermal route. Mater. Res. Bull. 63, 58 (2015)CrossRefGoogle Scholar
- 17.G. Asghar, M. Anis-ur-Rehman, Structural, dielectric and magnetic properties of Cr–Zn doped strontium hexa-ferrites for high frequency applications. J. Alloys Compd. 526, 85 (2012)CrossRefGoogle Scholar
- 18.T.P. Xie, L.J. Xu, C.L. Liu, Synthesis and properties of composite magnetic material SrCoxFe12–xO19 (x = 0–0.3). Powder Technol. 232, 87 (2012)CrossRefGoogle Scholar
- 19.A. Baykal, I.A. Auwal, S. Güner, H. Sözeri, Magnetic and optical properties of Zn2+ ion substituted barium hexaferrites. J. Magn. Magn. Mater. 430, 29 (2017)CrossRefADSGoogle Scholar
- 20.S. Vadivelan, N. Victor, Jaya, Investigation of magnetic and structural properties of copper substituted barium ferrite powder particles via co-precipitation. Results Phys. 6, 843 (2016)CrossRefADSGoogle Scholar
- 21.I. Bsoul, S.H. Mahood, Magnetic and structural properties of BaFe12–xGaxO19 nanoparticles. J. Alloys Compd. 489, 110 (2010)CrossRefGoogle Scholar
- 22.W. Li, X. Qiao, M. Li, T. Liu, H.X. Peng, La and Co substituted M-type barium ferrites processed by sol-gel combustion synthesis. Mater. Res. Bull. 48, 4449 (2013)CrossRefGoogle Scholar
- 23.Y.J. Yang, X.S. Liu, Microtructure and magnetic properties of La-Cu doped M-type strontium ferrites prepared by ceramic process. Mater. Technol. 29, 232 (2014)CrossRefGoogle Scholar
- 24.M.J. Iqbal, S. Farooq, Impact of Pr-Ni substitution on the electrical and magnetic properties of chemically derived nanosized hexaferrites. J. Alloys Compd. 505, 560 (2010)CrossRefGoogle Scholar
- 25.C. Herme, S.E. Jacobo, P.G. Bercoff, B. Arcondo, Mössbauer analysis of Nd-Co M-type strontium hexaferrite with different iron content. Hyperfine Interact. 195, 205 (2010)CrossRefADSGoogle Scholar
- 26.G. Litsardakis, I. Manolakis, K. Efthimiadis, Structural and magnetic properties of barium hexaferrites with Gd-Co substitution. J. Alloys Compd. 427, 194 (2007)CrossRefGoogle Scholar
- 27.H.M. Khan, M.U. Islam, Y.B. Xu, M.A. Iqbal, I. Ali, Structural and magnetic properties of TbZn-substituted calcium strontium M-type nano-structured hexa-ferrites. J. Alloys Compd. 589, 258 (2014)CrossRefGoogle Scholar
- 28.Z. Wu, R.N. Zhang, Z.W. Yu, L.W. Shan, L.M. Dong, X.Y. Zhang, The magnetic properties of permanent strontium ferrite doped with rare-earth by chemical co-precipitation method. Ferroelectrics 529, 120 (2018)CrossRefGoogle Scholar
- 29.M.J. Iqbal, M.N. Ashiq, Physical and electrical properties of Zr-Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383 (2008)CrossRefGoogle Scholar
- 30.Z.H. Hua, S.Z. Li, Z.D. Han, D.H. Wang, M. Lu, W. Zhong, B.X. Gu, Y.W. Du, The effec of La-Zn substitution on the microstructure and magnetic properties of the barium ferrites. Mater. Sci. Eng. A 448, 326 (2007)CrossRefGoogle Scholar
- 31.V.C. Chavan, S.E. Shisath, M.L. Mane, R.H. Kadam, S.S. More, Transformation of hexagonal to mixed spinel crystal structure and magnetic properties of Co2+ substituted BaFe12O19. J. Magn. Magn. Mater. 398, 32 (2016)CrossRefADSGoogle Scholar
- 32.D. Makovec, D. Primc, S. Šturm, A. Kodre, D. Hanžel, M. Drofenik, Structural properties of ultrafine Ba-hexaferrite nanoparticles. J. Solid State Chem. 196, 63 (2012)CrossRefADSGoogle Scholar
- 33.C. Serletis, G. Litsardakis, E. Pavlidou, K.G. Efthimiadis, Magnetic properties of co-precipitated hexaferrite powders with Sm-Co substitutions optimized with the molten flux method. Phys. B 525, 78 (2017)CrossRefADSGoogle Scholar
- 34.C.-C. Huang, A.-H. Jiang, C.-H. Liou, Y.-C. Wang, C.-P. Lee, T.-Y. Hung, C.-C. Shaw, Y.-H. Hung, M.-F. Kuo, C.-H. Cheng, Magnetic properties enhancement of cobalt-free M-type strontium hexagonal ferrites by CaCO3 and SiO2 addition. Intermetallics 89, 111 (2017)CrossRefGoogle Scholar
- 35.S.B. Galvão, A.C. Lima, S.N. de Medeiros, J.M. Soares, C.A. Paskocimas, The effect of the morphology on the magnetic properties of barium hexaferrite synthesized by Pechini method. Mater. Lett. 115, 38 (2014)CrossRefGoogle Scholar
- 36.B.H. Bhat, Effect of magnesium substitution on the structural and magnetic properties of M-type strontium hexaferrite. Sci. Eng. Appl. 2, 177 (2017)Google Scholar
- 37.P. Xu, X.J. Han, H.T. Zhao, Z.H. Liang, J.F. Wang, Effect of stoichiometry on the phase formation and magnetic properties of BaFe12O19 nanoparticles by reverse micelle technique. Mater. Lett. 62, 1305 (2008)CrossRefGoogle Scholar
- 38.M. Anis-ur-Rehman, G. Asghar, Variation in structural and dielectric properties of co-precipitated nanoparticles strontium ferrites due to value of pH. J. Alloys Compd. 509, 435 (2011)CrossRefGoogle Scholar
- 39.S. Güner, I.A. Auwal, A. Baykal, H. Sözeri, Synthesis, characterization and magneto optical properties of BaBixLaxYxFe12−3xO19 (0.0 ≤ x ≤ 0.33) hexaferrites. J. Magn. Magn. Mater. 416, 261 (2016)CrossRefADSGoogle Scholar
- 40.V.V. Soman, V.M. Nanoti, D.K. Kulkarni, Dielectric and magnetic properties of Mg-Ti substituted barium hexaferrite. Ceram. Int. 39, 5713 (2013)CrossRefGoogle Scholar
- 41.M.M.L. Sonia, S. Anand, V. Maria Vinosel, M. Asisi Janifer, S. Pauline, A. Manikandan, Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2–xO4 ferrite nano-crystallites synthesized by sol-gel route. J. Magn. Magn. Mater. 466, 238 (2018)CrossRefADSGoogle Scholar
- 42.S. Anand, A. Persis Amaliya, M. Asisi Janifer, S. Pauline, Structural, morphological and dielectric studies of zirconium substituted CoFe2O4 nanoparticles. Modern Electron. Mater. 3, 168 (2017)CrossRefGoogle Scholar
- 43.M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, Effect of lattice strain on structural, magnetic and dielectric properties of sol–gel synthesized nanocrystalline Ce3+ substituted nickel ferrite. J. Mater. Sci. Mater. Electron. 29, 15006 (2018)CrossRefGoogle Scholar
- 44.S. Singhal, T. Namgyal, J. Singh, K. Chandra, S. Bansal, A comparative study on the magnetic properties of MFe12O19 and MAlFe11O19 (M = Sr, Ba and Pb) hexaferrites with different morphologies. Ceram. Int. 37, 1833 (2011)CrossRefGoogle Scholar
- 45.Z. Mosleh, P. Kameli, M. Ranjbar, H. Salamati, Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticles. Ceram. Int. 40, 7279 (2014)CrossRefGoogle Scholar
- 46.A. Baniasadi, A. Ghasemi, A. Nemati, M.A. Ghadikolaei, E. Paimozd, Effect of Ti-Zn substitution structural, magnetic and microwave absorption characteristics of strontium hexaferrites. J. Alloys Compd. 583, 325 (2014)CrossRefGoogle Scholar
- 47.M.A. Khan, H. Ullah, M. Junaid, M.K. Sharif, M.F. Alboud, M.F. Warsi, S. Haider, Structural, magnetic and dielectric properties of Yb3+ doped BaCo-X hexagonal nanoferrites. J. Alloys Compd. 695, 3674 (2017)CrossRefGoogle Scholar
- 48.R. Vinaykumar, R. Mazumder, J. Bera, Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol-gel combustion and solid state route. J. Magn. Magn. Mater. 429, 359 (2017)CrossRefADSGoogle Scholar
- 49.J.H. Luo, Structural and magnetic properties of Nd-substituted strontium ferrite nanoparticles. Mater. Lett. 80, 162 (2012)CrossRefGoogle Scholar
- 50.Z. Wu, R. Zhang, Z. Yu, L. Shan, L. Dong, X. Zhang, Study on preparation and magnetic properties of SrGdxFe12–xCuxO19 (0.00 ≤ x ≤ 0.20) strontium ferrite prepared by solid phase method. Ferroelectrics 523, 82 (2018)CrossRefGoogle Scholar
- 51.L. Lechevallier, J.M. Le Breton, Substitution effects in M-type strontium hexaferrite powders investigated by Mössbauer spectrometry. J. Magn. Magn. Mater. 290–291, 1237 (2002)Google Scholar
- 52.J.M. Le Breton, J. Teillet, G. Wiesinger, A. Morel. F. kools, P. Tenaud, Mössbauer investigation of Sr-Fe-O hexaferrites with La-Co addition. IEEE Trans. Magn. 38, 2952 (2002)CrossRefADSGoogle Scholar
- 53.L. Lechevallier, J.M. Le Breton, J. Teillet, A. Morel. F. kools, P. Tenaud, Mössbauer investigation of Sr1–xLaxFe12–yCoyO19 ferrites. Phys. B 327, 135 (2003)CrossRefADSGoogle Scholar
- 54.J. Singh, C. Singh, D. Kaur, H. Zaki, I.A. Abdel-Latif, S.B. Narang, R. Jotania, S. Mishra, R. Joshi, P. Dhruv, M. Ghimiree, S.E. Shirsath, S.S. Meena, Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co2+-Al3+ doped M-type Ba-Sr hexaferrites synthesized by a ceramic method. J. Alloys Compd. 695, 1112 (2017)CrossRefGoogle Scholar
- 55.M. Md. Amir, S. Geleri, A. Güner, H. Baykal, Sözeri, Magneto optical properties of FeBxFe2–xO4 nanoparticles. J. Inorg. Organomet. Polym. 25, 1111 (2015)CrossRefGoogle Scholar
- 56.F.L. Wei, M. Lu, Z. Yang, The temperature dependence of magnetic properties of of Zn-Ti substituted Ba-ferrite particles for magnetic recording. J. Magn. Magn. Mater. 191, 249 (1999)CrossRefADSGoogle Scholar
- 57.M. El-Saadawy, DC conductivity for hexaferrites of the Co2−xCuxBaFe16O27 system. J. Magn. Magn. Mater. 219, 69 (2000)CrossRefADSGoogle Scholar