Advertisement

Applied Physics A

, 125:58 | Cite as

Thermally enhanced external photoelectric emission theoretical study for transmissive exponentially doped GaAs photocathode

  • Lei LiuEmail author
  • Feifei Lu
  • Shu Feng
  • Sihao Xia
  • Yu Diao
Article
  • 79 Downloads

Abstract

Thermally enhanced photoelectric emission (TEPE) is a new proposed mechanism to improve solar cell efficiency at low temperatures (< 400K). In this paper, the mechanism of TEPE phenomenon is discussed based on the transmission-mode GaAs photocathode with exponential-doping structure. Parameters varying with temperature are quantitatively studied in the photoelectric emission process, such as diffusion length, absorption coefficient, escape probability and the drift length. Combining the variation of these parameters by temperature with the quantum efficiency of the transmissive-mode exponential-doping photocathode, the final TEPE quantum efficiency formula is derived, which proves and explains that the temperature has an auxiliary effect on the improvement of the photoemission quantum efficiency in low-temperature environment.

Notes

Acknowledgements

This work is sponsored by the Six Talent Peaks Project in Jiangsu Province-China (Grant No. 2015-XCL-008), the Fundamental Research Funds for the Central Universities-China (Grant No. 30916011206) and Qing Lan Project of Jiangsu Province-China (Grant No. 2017-AD41779).

References

  1. 1.
    W. Tang. Based on the mechanism of photon-enhanced electron emission for solar energy converters. (Chinese Academy of Sciences, Beijing, 2014)Google Scholar
  2. 2.
    W. Tang, W. Yang, Y. Yang et al., GaAs film for photon-enhanced thermionic emission solar harvesters. Mater. Sci. Semicond. Process. 25(9), 143–147 (2014)CrossRefGoogle Scholar
  3. 3.
    P. Nema, R.K. Nema, S. Rangnekar, A current and future state of art development of hybrid energy system using wind and PV-solar: a review. Renew. Sustain. Energy Rev. 13(8), 2096–2103 (2009)CrossRefGoogle Scholar
  4. 4.
    M. Zagrouba, A. Sellami, M. Bouaïcha et al., Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction. Sol. Energy 84(5), 860–866 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    R. Birkmire. Thin-film solar cells and modules. In: Solar cells and their applications, 2nd Ed. (John Wiley & Sons, Inc. 2010), pp. 137–157Google Scholar
  6. 6.
    L.B. Linford, Recent developments in the study of the external photoelectric effect. Rev. Mod. Phys. 5(1), 34–61 (1933)zbMATHADSCrossRefGoogle Scholar
  7. 7.
    X. Chen, Y. Zhang, B. Chang et al., Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer. Opt. Commun. 287(21), 35–39 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    J. Zhang, X. Wang, W. Yang et al. Photoemission stability of negative electron affinity GaN photocathode. In: Proceedings of SPIE—the international society for optical engineering. 8555(3):277–298 (2012)Google Scholar
  9. 9.
    J.W. Schwede, I. Bargatin, D.C. Riley et al., Photon-enhanced thermionic emission for solar concentrator systems. Nat. Mater. 9(9), 762–767 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Wang, T. Liao, Y. Zhang et al., Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices. J. Appl. Phys. 119(4), 045106 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    A. Varpula, K. Tappura, M. Prunnila, Si, GaAs, and InP as cathode materials for photon-enhanced thermionic emission solar cells. Solar Energy Mater. Solar Cells 134(134), 351–358 (2015)CrossRefGoogle Scholar
  12. 12.
    K. Sahasrabuddhe, J.W. Schwede, I. Bargatin et al., A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission. J. Appl. Phys. 112(9), 941 (2012)CrossRefGoogle Scholar
  13. 13.
    A.G. Zhuravlev, A.S. Romanov, V.L. Alperovich, Photon-enhanced thermionic emission from p-GaAs with nonequilibrium Cs overlayers. Appl. Phys. Lett. 105(25), 762 (2014)CrossRefGoogle Scholar
  14. 14.
    G. Wang, B. Chang, X. Li et al., Solar energy conversion through thermally enhanced external photoelectric emission from NaCsSb photocathodes. Solar Energy Mater. Solar Cells 159, 73–79 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Niu, Y. Zhang, B. Chang et al., Influence of exponential doping structure on the performance of GaAs photocathodes. Appl. Opt. 48(29), 5445–5450 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    H. Shen, M. Dutta, L. Fotiadis et al., Photoreflectance study of surface Fermi level in GaAs and GaAlAs. Appl. Phys. Lett. 57(20), 2118–2120 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    X. Fu, Y. Ai, Quantum efficiency dependence on built-in electric fields in exponential-doped and graded-doped gallium arsenide photocathodes. Optik Int. J. Light Electron Opt. 123(20), 1888–1890 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, J. Niu, J. Zhao et al., Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes. J. Appl. Phys. 108(9), 3859 (2010)Google Scholar
  19. 19.
    D.E. Aspnes, A.A. Studna, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27(2), 985–1009 (1983)ADSCrossRefGoogle Scholar
  20. 20.
    M.B. Panish, H.C. Casey, Temperature dependence of the energy gap in GaAs and GaP. J. Appl. Phys. 40(1), 163–167 (1969)ADSCrossRefGoogle Scholar
  21. 21.
    A. Carbone, F. Demichelis, G. Kaniadakis, Physical properties of hydrogenated amorphous gallium arsenide. J. Phys. Chem. Solids 41(11), 1231–1234 (1980)CrossRefGoogle Scholar
  22. 22.
    J.H. Neave, P.J. Dobson, B.A. Joyce et al., Reflection high-energy electron diffraction oscillations from vicinal surfaces—a new approach to surface diffusion measurements. Appl. Phys. Lett. 47(2), 100–102 (1985)ADSCrossRefGoogle Scholar
  23. 23.
    J. Zeng. Introduction to quantum mechanics. (Peking University Press, Beijing, 1998)Google Scholar
  24. 24.
    H. Wang, Y. Zhang, Airy function and transfer matrix method in the study of quasi-bound levels of biased multi-barrier quantum structures. Acta Phys. Sin. 54(5), 2226–2232 (2005)Google Scholar
  25. 25.
    Y. Zhang, J. Niu, J. Zou et al., Surface activation behavior of negative-electron-affinity exponential-doping GaAs photocathodes. Opt. Commun. 321(12), 32–37 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Zhang, Y. Qian, C. Feng et al., Improved activation technique for preparing high-efficiency GaAs photocathodes. Opt. Mater. Express 7(9), 3456–3465 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Diao, L. Liu, S. Xia et al., Early stages of Cs adsorption mechanism for GaAs nanowire surface. Appl. Surf. Sci. 434, 950–956 (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lei Liu
    • 1
    Email author
  • Feifei Lu
    • 1
  • Shu Feng
    • 1
  • Sihao Xia
    • 1
  • Yu Diao
    • 1
  1. 1.Department of Optoelectronic Technology, School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations