Advertisement

Applied Physics A

, 125:47 | Cite as

Exploring the possibility of the zigzag WS2 nanoribbons as anode materials for sodium-ion batteries

  • G. Reza Vakili-NezhaadEmail author
  • Majid Al-Wadhahi
  • Ashish M. Gujrathi
  • Nabeel Al-Rawahi
  • Mahnaz MohammadiEmail author
Article

Abstract

Developing highly efficient anode materials for Na batteries with large capacity and also high stability and mobility is a great desire. In this paper, using the first-principle calculations, we explored the feasibility of using zigzag WS2 nanoribbon as rechargeable sodium-ion battery anode electrode. We also have investigated the electronic structure and charge transfer properties. The calculated voltage was suitable for the anode application. The theoretical specific capacities can reach up to 315.46 mAh g−1, compared to the values of 372 mAh g−1 for graphite and 273.52 mAh g−1 for WS2 nanolayer. The activation barrier of WS2 nanoribbon is only 0.12 eV, higher than the 0.07 eV of the WS2 nanolayer. Our calculations suggest that zigzag WS2 nanoribbons can serve as a promising high-capacity Na ion battery anode and provide proper insight into exploring high-capacity 2D nanoribbons for potential battery applications.

Notes

Acknowledgements

The authors would like to acknowledge Sultan Qaboos University support through the internal Grant IG/ENG/PCED/18/01.

Supplementary material

339_2018_2336_MOESM1_ESM.docx (483 kb)
Supplementary material 1 (DOCX 483 KB)

References

  1. 1.
    T.S. Sahu, S. Mitra, Sci. Rep. 5, 12571 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    K. N.Yabuuchi, M. Kubota, S. Dahbi, Komaba, Chem. Rev. 114, 11636 (2014)CrossRefGoogle Scholar
  3. 3.
    D. Kundu, E. Talie, V. Duffort, L.F. Nazar, Angew.Chem.Int. Ed. 54, 3431 (2015)CrossRefGoogle Scholar
  4. 4.
    B.L. Ellis, L.F. Nazar, Curr. Opin. Solid State Mater. Sci. 16, 168 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    C. Xia, R. Black, R. Fernandes, B. Adams, L.F. Nazar, Nat. Chem. 7, 496 (2015)CrossRefGoogle Scholar
  6. 6.
    H. Yadegari, M.N. Banis, B. Xiao, Q. Sun, X. Li, A. Lushington, B. Wang, R. Li, T.K. Sham, X. Cui, X. Sun, Chem. Mater 27, 3040 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Liu, F. Fan, J. Wang, Y. Liu, H. Chen, K.L. Jungjohann, Y. Xu, Y. Zhu, D. Bigio, T. Zhu, C. Wang, Nano Lett. 14, 3445 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    A.D. Stevens, R.J. Dahn, J. Electrochem. Soc. 147, 1271 (2000)CrossRefGoogle Scholar
  9. 9.
    R. Alcantara, P. Lavela, G.F. Ortiz, J.L. Tirado, Electrochem. Solid State Lett. 8, 222 (2005)CrossRefGoogle Scholar
  10. 10.
    L. Fu et al., Nanoscale 6, 1384 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Maeda, S. Harada, Synth. Met. 31, 389 (1989)CrossRefGoogle Scholar
  12. 12.
    A. Rudola, K. Saravanan, C.W. Mason, P. Balaya, J. Mater. Chem. A 1, 2653 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Wen, et al. Nat. Commun 5, 4033 (2014)CrossRefGoogle Scholar
  14. 14.
    M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Adv. Funct. Mater 23, 947 (2013)CrossRefGoogle Scholar
  15. 15.
    N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev 114, 11636 (2014)CrossRefGoogle Scholar
  16. 16.
    V. Shukla, R.B. Araujo, N.K. Jena, R. Ahuja, Phys. Chem. Chem. Phys. 20, 22008 (2018)CrossRefGoogle Scholar
  17. 17.
    V. Shukla, R.B. Araujo, N.K. Jena, R. Ahuja, Nano Energy 41,251 (2017)CrossRefGoogle Scholar
  18. 18.
    J. Zhu, U. Schwingenschlögl, 2D Mater. 3, 035012 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Sannyal, Z. Zhang, X. Gao, J. Jang, Comput. Mater. Sci. 154, 204 (2018)CrossRefGoogle Scholar
  20. 20.
    V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Phys. Chem. Chem. Phys. 17, 13921 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, Z.-F. Wu, P.-F. Gao, S. Zhang, Y.-H. Wen, ACS Appl. Mater. Interfaces 8(34), 22175 (2016)CrossRefGoogle Scholar
  22. 22.
    G. Jeong, Y.-U. Kim, H. Kim, Y.-J. Kim, H.-J. Sohn, Energy Environ. Sci. 4, 1986 (2011)CrossRefGoogle Scholar
  23. 23.
    W. Li, Y. Yang, G. Zhang, Y.-W. Zhang, Nano Lett. 15(3), 1691 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    M.-Q. Zhao, M. Torelli, C.E. Ren, M. Ghidiu, Z. Ling, B. Anasori, M.W. Barsoum, Y. Gogotsi, Nano Energy 30, 603 (2016)CrossRefGoogle Scholar
  25. 25.
    G. Chen, Y. Bai, H. Li, Y. Li, Z. Wang, Q. Ni, L. Liu, F. Wu, Y. Yao, C. Wu, ACS Appl. Mater. Interfaces 9, 6666 (2017)CrossRefGoogle Scholar
  26. 26.
    N.K. Jena, R.B. Araujo, V. Shukla, R. Ahuja, ACS Appl. Mater. Interfaces 9(19), 16148 (2017)CrossRefGoogle Scholar
  27. 27.
    H. Hwang, H. Kim, J. Cho, Nano Lett. 11, 4826 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    J.T. Q.Li, E.C. Newberg, J.C. Walter, R.M. Hemminger, Penner, Nano Lett. 4, 277 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    G. Kresse, J. Jouber, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Li, Z. Zhou, S. Zhang, Z. Chen, J. Am.Chem. Soc. 130, 16739 (2008)CrossRefGoogle Scholar
  32. 32.
    Z. Wang, H. Li, Z. Liu, Z. Shi, J. Lu, K. Suenaga, S.K. Joung, T. Okazaki, Z. Gu, J. Zhou, Z. Gao, G. Li, S. Sanvito, E. Wang, S. Iijima, J. Am. Chem. Soc. 132, 13840 (2010)CrossRefGoogle Scholar
  33. 33.
    Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, B. Huang, Phys. Chem. Chem. Phys. 13, 15546 (2011)CrossRefGoogle Scholar
  34. 34.
    B. Khoshnevisan, M. Mohammadi, Appl. Phys. A 112, 311 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    C. Uthaisar, V. Barone, J.E. Peralta, J. Appl. Phys. 106, 113715 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    S. Yang, D. Li, T. Zhang, Z. Tao, J. Chen, J. Phys. Chem. C 116, 1307 (2012)CrossRefGoogle Scholar
  37. 37.
    Y. Li, D. Wu, Z. Zhou, C.R. Cabrera, Z. Chen, J. Phys. Chem. Lett. 3, 2221 (2012)CrossRefGoogle Scholar
  38. 38.
    A. Kuc, N. Zibouche, T. Heine, Phys. Rev. B 83, 245213 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    H. Zhang, X. Li, L. Liu, J. Appl. Phys. 114, 093710 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    P. Senguttuvan, G. Rousse, V. Seznec, J.-M. Tarascon, M. Rosa Palacin, Chem. Mater. 23, 4109 (2011)CrossRefGoogle Scholar
  41. 41.
    H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, J. Phys. Chem. Lett. 2, 2560 (2011)CrossRefGoogle Scholar
  42. 42.
    R. Alcantara, J.M. Jimenez-Mateos, P. Lavela, J.L. Tirado, Electrochem. Commun. 3, 639 (2001)CrossRefGoogle Scholar
  43. 43.
    D. Barayang Putungan, S.-H. Lin, J.-L. Kuo, ACS Appl. Mater. Interfaces 8(29) 18754 (2016)CrossRefGoogle Scholar
  44. 44.
    P. Liang, Y. Cao, B. Tai, L. Zhang, H. Shu, F. Li, D. Chao, X. Du, J. Alloy. Compd. 704, 152 (2017)CrossRefGoogle Scholar
  45. 45.
    J. Park, J.-S. Kim, J.-W. Park, T.-H. Nam, K.-W. Kim, J.-H. Ahn, G. Wang, H.-J. Ahn, Electrochim. Acta 92, 427 (2013)CrossRefGoogle Scholar
  46. 46.
    S.-K. Park, J. Lee, S. Bong, B. Jang, K.-D. Seong, Y. Piao, ACS Appl. Mater. Interfaces 8(30), 19456 (2016)CrossRefGoogle Scholar
  47. 47.
    Y.-X. Wang, S.-L. Chou, D. Wexler, H.-K. Liu, S.-X. Dou, Chem. Eur. J. 20(31), 9607 (2014)CrossRefGoogle Scholar
  48. 48.
    L. David, R. Bhandavat, G. Singh, ACS Nano 8(2), 1759 (2014)CrossRefGoogle Scholar
  49. 49.
    G. Henkelman, B.P. Uberuaga, H. Jonsson, J. Chem. Phys. 113, 9901 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    C. Ling, F. Mizuno, Phys. Chem. Chem. Phys. 14(22), 10419 (2014) 16)CrossRefGoogle Scholar
  51. 51.
    D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, ACS Appl. Mater. Interfaces 6, 11173 (2014)CrossRefGoogle Scholar
  52. 52.
    M. Mortazavi, C. Wang, J.K. Deng, V.B. Shenoy, N.V. Medhekar, J. Power Sources 268, 279 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    D.B. Putungan, S.-H. Lin, J.-L. Kuo, ACS Appl. Mater. Interfaces 8, 18754 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • G. Reza Vakili-Nezhaad
    • 1
    Email author
  • Majid Al-Wadhahi
    • 1
  • Ashish M. Gujrathi
    • 1
  • Nabeel Al-Rawahi
    • 2
  • Mahnaz Mohammadi
    • 3
    Email author
  1. 1.Petroleum and Chemical Engineering Department, College of EngineeringSultan Qaboos UniversityMuscatOman
  2. 2.Mechanical and Industrial Engineering, College of EngineeringSultan Qaboos UniversityMuscatOman
  3. 3.Department of Physics, Faculty of ScienceQom University of TechnologyQomIran

Personalised recommendations