Applied Physics A

, 125:30 | Cite as

Electro-optical and dielectric performance analysis: the influence of azo dye on polymer/LC composite structures

  • Gülsüm KocakülahEmail author
  • Gülnur Önsal
  • Oğuz Köysal


In the present work, electro-optical and dielectric properties of polymer/LC doped with azo dye methyl red (MR) were investigated. Norland optical adhesive (NOA65) and nematic liquid-crystal (E63-coded nematic liquid crystal) materials were used to compose of polymer/LC composite structure. A doping agent ratio of MR was chosen 1% wt/wt in polymer/LC composite structure. Dielectric measurements of the obtained samples were held between 10 Hz and 10 MHz at room temperature using dielectric/impedance analyzer. Physical parameters such as dielectric permittivity, dielectric anisotropy, electric modulus, loss tangent, relaxation frequency, relaxation time, threshold voltage, and splay elastic constant were obtained from experimental data. Optical bandgap values of polymer/LC and polymer/LC/MR composite structures were estimated using UV spectroscopy technique. Polymer/LC composite structures’ electro-optical properties were affected the MR dispersal which was reduced the anchoring force between polymer and LC molecules; therefore, threshold voltage and splay elastic constant decreased. In addition, dispersal of MR caused a decrease in optical bandgap values of polymer/LC composite structures. Due to the increase in charge density caused by MR, the value of the current passing through the polymer/LC composite structures increased as well as its dependence on voltage. Results show that MR dispersal enhanced electro-optical and dielectric properties of polymer/LC composite structures and makes it suitable to design new based on optoelectronic device applications.



This work supported financially by Düzce University Scientific Research Project (Project No: 2018.05.02.811).


  1. 1.
    M. Gökçen, O. Köysal, Mater. Chem. Phys. 129, 1142–1145 (2011)CrossRefGoogle Scholar
  2. 2.
    D. Jayoti, P. Malik, A. Singh, J. Mol. Liq. 225, 456–461 (2017)CrossRefGoogle Scholar
  3. 3.
    R. Fatayati, A. Kusumaatmaja, Y. Yusuf, Jpn. J. Appl. Phys. 57, 1–3 (2018) (088005) CrossRefGoogle Scholar
  4. 4.
    M. Yıldırım, A. Allı, G. Önsal, N. Gök, O. Köysal, Compos. Part B 117, 43–48 (2017)CrossRefGoogle Scholar
  5. 5.
    M.A. Mumin, W.Z. Xu, P.A. Charpentier, Nanotechnology 26, 1–14 (2015) (315702) CrossRefGoogle Scholar
  6. 6.
    H. Souri, J. Yu, H. Jeon, J.W. Kim, C.M. Yang, N.H. You, B.J. Yang, Carbon 120, 427–437 (2017)CrossRefGoogle Scholar
  7. 7.
    G. Li, Z.K. Tan, D. Di, M.L. Lai, L. Jiang, J.H.W. Lim, R.H. Friend, N.C. Greenham, Nano Lett. 15, 2640–2644 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    A. Demir, O. Köysal, Philos. Mag. 96(22), 2362–2371 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    A. Facchetti, Mater. Today 16(4), 123–132 (2013)CrossRefGoogle Scholar
  10. 10.
    A.C. Mayer, S.R. Scully, B.E. Hardin, M.W. Rowell, M.D. McGehee, Mater. Today 10(11), 28–33 (2007)CrossRefGoogle Scholar
  11. 11.
    H.H.M. Elkhalgi, S. Khandka, U.B. Singh, K.L. Pandey, R. Dabrowski, R. Dhar, Liq. Cryst. 45(12), 1795–1801 (2018)CrossRefGoogle Scholar
  12. 12.
    R. Mishra, J. Hazarika, A. Hazarika, B. Gogoi, R. Dubey, D. Bhattacharjee, K.N. Singh, P.R. Alapati, Liq. Cryst. 45(11), 1661–1671 (2018)CrossRefGoogle Scholar
  13. 13.
    O. Köysal, Synth. Met. 160, 1097–1100 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Yıldırım, O. Köysal, G. Önsal, E. Gümüş, J. Mol. Liq. 223, 868–872 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Liu, Y. Zhang, Y. Tang, Z. Zhao, Q. Wang, G. Jia, Results Phys. 9, 1537–1542 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    U.B. Singh, R. Dhar, R. Dabrowski, P.M. Pandey, Liq. Cryst. 40, 774–782 (2013)CrossRefGoogle Scholar
  17. 17.
    R. Verma, M. Mishra, R. Dhar, R. Dabrowski, J. Mol. Liq. 221, 190–196 (2016)CrossRefGoogle Scholar
  18. 18.
    R. Verma, M. Mishra, R. Dhar, R. Dabrowski, Liq. Cryst. 44(3), 544–556 (2017)CrossRefGoogle Scholar
  19. 19.
    G. Pathak, K. Agrahari, G. Yadav, A. Srivastava, O. Strzezysz, R. Manohar, Appl. Phys. A 124(463), 1–9 (2018)Google Scholar
  20. 20.
    R. Manohar, S. Manohar, V.S. Chandel, Mater. Sci. Appl. 2, 839–847 (2011)Google Scholar
  21. 21.
    S.K. Gupta, D.P. Singh, R. Manohar, S. Kumar, Curr. Appl. Phys. 16, 79–82 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    N. Yadav, S. Kumar, R. Dhar, RSC Adv. 5, 78823–78832 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Schadt, Liq. Cryst. 42(5–6), 646–652 (2015)Google Scholar
  24. 24.
    Y.-H. Lin, Y.-J. Wang, V. Reshetnyak, Liq. Cryst. Rev. 5(2), 111–143 (2017)CrossRefGoogle Scholar
  25. 25.
    I. Abdulhalim, Liq. Cryst. Today 20(2), 44–60 (2011)CrossRefGoogle Scholar
  26. 26.
    S.H. Lee, T.K. Lim, S.T. Shin, K.S. Park, Jpn. J. Appl. Phys. 41, 208–210 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    F. Ahmad, M. Jamil, Y.J. Jeon, Int. J. Polym. Anal. Charact. 22(8), 659–668 (2017)CrossRefGoogle Scholar
  28. 28.
    D.-K. Yang, S.-T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, Chichester, 2006)CrossRefGoogle Scholar
  29. 29.
    E. Lueder, Liquid Crystal Displays (Wiley, Chichester, 2001)Google Scholar
  30. 30.
    J.M. Mucha, Prog. Polym. Sci. 28(5), 837–873 (2003)CrossRefGoogle Scholar
  31. 31.
    R.R. Deshmukh, A.K. Jain, Liq. Cryst. 41(7), 960–975 (2014)CrossRefGoogle Scholar
  32. 32.
    C.C. Hsu, Y.X. Chen, H.W. Li, J.S. Hsu, Opt. Express 24(7), 7063–7068 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    K.J. Yang, S.C. Lee, B.D. Choi, Jpn. J. Appl. Phys. 49, 1–5 (2010) (05EA05) Google Scholar
  34. 34.
    Y. Kim, K. Kim, K.B. Kim, J.Y. Park, N. Lee, Y. Seo, Curr. Appl. Phys. 16, 409–414 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    A.Y.G. Fuh, C.C. Chen, C.K. Liu, K.T. Cheng, Opt. Express 17(9), 7088–7094 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    G. Pathak, S. Pandey, R. Katiyar, A. Srivastava, R. Dabrowski, K. Garbat, R. Manohar, J. Lumin. 192, 33–39 (2017)CrossRefGoogle Scholar
  37. 37.
    K. Agrahari, G. Pathak, T. Vimal, K. Kurp, A. Srivastava, R. Manohar, J. Mol. Liq. 264, 510–514 (2018)CrossRefGoogle Scholar
  38. 38.
    M. Mishra, R.S. Dabrowski, R. Dhar, J. Mol. Liq. 213, 247–254 (2016)CrossRefGoogle Scholar
  39. 39.
    M. Pande, P.K. Tripathi, A.K. Misra, S. Manohar, R. Manohar, S. Singh, Appl. Phys. A 122(217), 1–9 (2016)Google Scholar
  40. 40.
    P.K. Tripathi, M. Pande, S. Singh, Appl. Phys. A 122(847), 1–10 (2016)Google Scholar
  41. 41.
    Ö. Tüzün Özmen, K. Goksen, A. Demir, M. Durmus, O. Köysal, Synth. Met. 162, 2188–2192 (2012)CrossRefGoogle Scholar
  42. 42.
    M.T. Ramesan, P. Jayakrishnan, T. Anilkumar, G. Mathew, J. Mater. Sci. Mater. Electron. 29, 1992–2000 (2018)CrossRefGoogle Scholar
  43. 43.
    D.P. Shcherbinin, E. Konshina, Liq. Cryst. 44(4), 648–655 (2017)CrossRefGoogle Scholar
  44. 44.
    F. Al-Hazmi, A.A. Al-Ghamdi, N. Al-Senany, F. Alnowaiser, F. Yakuphanoglu, Compos. Part B 56, 15–19 (2014)CrossRefGoogle Scholar
  45. 45.
    R.K. Shukla, A. Sharma, T. Mori, T. Hegmann, W. Haase, Liq. Cryst. 43(6), 695–703 (2016)CrossRefGoogle Scholar
  46. 46.
    P. Durmuş, M. Yıldırım, A.: Vacuum, J. Vac. Sci. Technol. Surf. Films 32, 1–4 (2014) (061512) Google Scholar
  47. 47.
    A. Neagu, L. Curecheriu, M. Airimioaei, A. Cazacu, A. Cernescu, L. Mitoseriu, Compos. Part B 71, 210–217 (2015)CrossRefGoogle Scholar
  48. 48.
    S.P. Yadav, K. Kr. A. Pandey, R. Kr. Misra, Manohar, Acta Phys. Pol., A 119(6), 824–828 (2011)CrossRefGoogle Scholar
  49. 49.
    Z. Güven Özdemir, N. Yilmaz Canli, M. Kılıç, O. Köysal, Ö Yılmaz, M. Okutan, Mol. Cryst. Liq. Cryst. 634, 1–11 (2016)CrossRefGoogle Scholar
  50. 50.
    J. Mirzaei, M. Urbanski, H.S. Kitzerow, Philos. Trans. R. Soc. A 371, 1–18 (2013) (20120256) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gülsüm Kocakülah
    • 1
    Email author
  • Gülnur Önsal
    • 1
  • Oğuz Köysal
    • 1
  1. 1.Department of Physics, Faculty of Arts and SciencesDüzce UniversityDüzceTurkey

Personalised recommendations