Applied Physics A

, 125:44 | Cite as

WO3 nanosheets/g-C3N4 nanosheets’ nanocomposite as an effective photocatalyst for degradation of rhodamine B

  • Senlin Deng
  • Zebin Yang
  • Guojun Lv
  • Yongqiang Zhu
  • Haichao Li
  • Fumin WangEmail author
  • Xubin ZhangEmail author


A novel WO3 nanosheets (WO3 NS)/g-C3N4 Nanosheets’ (g-C3N4 NS) nanocomposite photocatalyst was fabricated through a simple calcination process. WO3 NS was first prepared with the aid of P123 lamellar micelles and g-C3N4 NS was synthesized by two-step calcination process. The nanocomposite photocatalyst was characterized by X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectrometry, UV–Vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence. The novel nanocomposite photocatalyst demonstrated higher photocatalytic activity for rhodamine B degradation than corresponding g-C3N4 NS. 20 wt% WO3 NS/g-C3N4 NS showed the highest photocatalytic performance, which was 4.70 times higher than that of pure g-C3N4 NS. The results confirmed that the incorporation of WO3 NS could definitely accelerate the transfer of photogenerated electrons and effectively promote the separation of electrons and holes, thereby improving the photocatalytic efficiency. The trapping experiments proved that the mechanism of photocatalytic degradation may be rooted in the formation of Z-scheme system.



We gratefully acknowledge financial support by the National Basic Research Program of China (973 Program) (Grant no: 2012CB720302) and the National Key Research and Development Program of China (2016YFF0102503).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77, 247 (2001)CrossRefGoogle Scholar
  2. 2.
    A.R. Ribeiro, O.C. Nunes, M.F.R. Pereira, A.M.T. Silva, Environ. Int. 75, 33 (2015)CrossRefGoogle Scholar
  3. 3.
    M.A. Oturan, J.J. Aaron, Crit. Rev. Environ. Sci. Technol. 44, 2577 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Appl. Catal. B Environ. 31, 145 (2001)CrossRefGoogle Scholar
  5. 5.
    A.O. Ibhadon, P. Fitzpatrick, Catalysts 3, 189 (2013)CrossRefGoogle Scholar
  6. 6.
    M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water. Res. 44, 2997 (2010)CrossRefGoogle Scholar
  7. 7.
    I.K. Konstantinou, T.A. Albanis, Appl. Catal. B Environ. 49, 1 (2004)CrossRefGoogle Scholar
  8. 8.
    J.T. Zhang, Z.G. Xiong, X.S. Zhao, J. Mater. Chem. 21, 3634 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)ADSCrossRefGoogle Scholar
  10. 10.
    X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)CrossRefGoogle Scholar
  11. 11.
    K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, J.W. Tang, Energy Environ. Sci. 8, 731 (2015)CrossRefGoogle Scholar
  13. 13.
    S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Science 297, 2243 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    J. Luo, X.S. Zhou, L. Ma, L.M. Xu, X.Y. Xu, Z.H. Du, J.Q. Zhang, Mater. Res. Bull. 81, 16 (2016)CrossRefGoogle Scholar
  15. 15.
    H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Adv. Mater. 24, 229 (2012)CrossRefGoogle Scholar
  16. 16.
    S.Y. Dong, J.L. Feng, M.H. Fan, Y.Q. Pi, L.M. Hu, X. Han, M.L. Liu, J.Y. Sun, J.H. Sun, RSC Adv. 5, 14610 (2015)CrossRefGoogle Scholar
  17. 17.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116, 7159 (2016)CrossRefGoogle Scholar
  19. 19.
    Z.W. Zhao, Y.J. Sun, F. Dong, Nanoscale 7, 15 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    S.W. Cao, J.X. Low, J.G. Yu, M. Jaroniec, Adv. Mater. 27, 2150 (2015)CrossRefGoogle Scholar
  21. 21.
    K. Maeda, X.C. Wang, Y. Nishihara, D.L. Lu, M. Antonietti, K. Domen, J. Phys. Chem. C 113, 4940 (2009)CrossRefGoogle Scholar
  22. 22.
    Y. Wang, X.C. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51, 68 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Guo, J.H. Li, Z.Q. Gao, X. Zhu, Y. Liu, Z.B. Wei, W. Zhao, C. Sun, Appl. Catal. B Environ. 192, 57 (2016)CrossRefGoogle Scholar
  24. 24.
    Q.J. Xiang, J.G. Yu, M. Jaroniec, J. Phys. Chem. C 115, 7355 (2011)CrossRefGoogle Scholar
  25. 25.
    W.K. Ho, Z.Z. Zhang, M.K. Xu, X.W. Zhang, X.X. Wang, Y. Huang, Appl. Catal. B Environ. 179, 106 (2015)CrossRefGoogle Scholar
  26. 26.
    S. Kumar, T. Surendar, A. Baruah, V. Shanker, J. Mater. Chem. A 1, 5333 (2013)CrossRefGoogle Scholar
  27. 27.
    D.J. Martin, K.P. Qiu, S.A. Shevlin, A.D. Handoko, X.W. Chen, Z.X. Guo, J.W. Tang, Angew. Chem. Int. Ed. 53, 9240 (2014)CrossRefGoogle Scholar
  28. 28.
    K. Wang, Q. Li, B.S. Liu, B. Cheng, W.K. Ho, J.G. Yu, Appl. Catal. B Environ. 176, 44 (2015)Google Scholar
  29. 29.
    M. Zhang, J. Xu, R.L. Zong, Y.F. Zhu, Appl. Catal. B Environ. 147, 229 (2014)CrossRefGoogle Scholar
  30. 30.
    P. Niu, L. Zhang, G. Liu, H.-M. Cheng, Adv. Funct. Mater. 22, 4763 (2012)CrossRefGoogle Scholar
  31. 31.
    X.D. Zhang, H.X. Wang, H. Wang, Q. Zhang, J.F. Xie, Y.P. Tian, J. Wang, Y. Xie, Adv. Mater. 26, 4438 (2014)CrossRefGoogle Scholar
  32. 32.
    T. Lee, Y. Lee, W. Jang, A. Soon, J. Mater. Chem. A 4, 11498 (2016)CrossRefGoogle Scholar
  33. 33.
    Z.G. Zhao, M. Miyauchi, Angew. Chem. Int. Ed. 47, 7051 (2008)CrossRefGoogle Scholar
  34. 34.
    L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai, Dalton Trans. 42, 8606 (2013)CrossRefGoogle Scholar
  35. 35.
    I. Aslam, C.B. Cao, M. Tanveer, W.S. Khan, M. Tahir, M. Abid, F. Idrees, F.K. Butt, Z. Ali, N. Mahmood, New. J. Chem. 38, 5462 (2014)CrossRefGoogle Scholar
  36. 36.
    V.P. Dinesh, P. Biji, A. Ashok, S.K. Dhara, M. Kamruddin, A.K. Tyagi, B. Raj, RSC Adv. 4, 58930 (2014)CrossRefGoogle Scholar
  37. 37.
    H. Katsumata, Y. Tachi, T. Suzuki, S. Kaneco, RSC Adv. 4, 21405 (2014)CrossRefGoogle Scholar
  38. 38.
    L. Xin, A.L. Jin, Y.S. Jia, T.L. Xia, C.X. Deng, M.H. Zhu, C.F. Chen, X.S. Chen, Appl. Surf. Sci. 405, 359 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    S.F. Chen, Y.F. Hu, S.G. Meng, X.L. Fu, Appl. Catal. B Environ. 150, 564 (2014)CrossRefGoogle Scholar
  40. 40.
    X.Y. Chen, Y. Zhou, Q. Liu, Z.D. Li, J.G. Liu, Z.G. Zou, ACS. Appl. Mater. Interfaces 4, 3372 (2012)CrossRefGoogle Scholar
  41. 41.
    J. Feng, T.T. Chen, S.N. Liu, Q.H. Zhou, Y.M. Ren, Y.Z. Lv, Z.J. Fan, J. Colloid Interface Sci. 479, 1 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    H. Xu, L. Liu, X. She, Z. Mo, Y. Xu, L. Huang, Y. Song, H. Li, RSC Adv. 6, 8019 (2016)Google Scholar
  43. 43.
    F. Dong, Y.H. Li, Z.Y. Wang, W.K. Ho, Appl. Surf. Sci. 358, 393 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Q. Gu, Z.W. Gao, H.G. Zhao, Z.Z. Lou, Y.S. Liao, C. Xue, RSC Adv. 5, 49317 (2015)CrossRefGoogle Scholar
  45. 45.
    S. Rahimnejad, J.H. He, F. Pan, X. Lee, W. Chen, K. Wu, G.Q. Xu, Mater. Res. Express 1, 045044 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    Y.A. Li, M.Q. Wang, S.J. Bao, S.Y. Lu, M.W. Xu, D.B. Long, S.H. Pu, Ceram. Int. 42, 18521 (2016)CrossRefGoogle Scholar
  47. 47.
    J.Q. Li, H.J. Hao, J. Zhou, Z.F. Zhu, New. J. Chem. 40, 9638 (2016)CrossRefGoogle Scholar
  48. 48.
    J.L. Zhao, Z.Y. Ji, X.P. Shen, H. Zhou, L.B. Ma, Ceram. Int. 41, 5600 (2015)CrossRefGoogle Scholar
  49. 49.
    S.F. Chen, Y.F. Hu, X.L. Jiang, S.G. Meng, X.L. Fu, Mater. Chem. Phys. 149, 512 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringQinghai Nationalities UniversityXiningPeople’s Republic of China

Personalised recommendations