Advertisement

Applied Physics A

, 125:35 | Cite as

Simulated annealing and first-principles study of substitutional Ga-doped graphene

  • E. Brito
  • L. Leite
  • Sergio AzevedoEmail author
  • J. R. Martins
  • J. R. Kaschny
Article
  • 50 Downloads

Abstract

The combination of Monte Carlo-based simulated annealing and ab initio calculations were applied to investigate the electronic and optical properties of substitutional Ga-doped graphene. During simulated annealing, it was observed the formation of gallium clusters, which may be an indication of the low dopant solubility. The obtained results indicate that the introduction of a single gallium atom in the graphene layer induces the formation of a band gap. Nevertheless, increasing the dopant concentration, the gap width fluctuates according to the number, odd or even, of dopant atoms. For an odd number, the gap width decreases with increasing dopant concentration. It was obtained that the structure distortions, produced by the introduction of the dopant atoms, induces significant changes in the electronic properties of the layer. Additionally, it is possible to infer that the optical absorption in the infrared region can be tuned as a function of the dopant concentration.

Notes

Acknowledgements

The authors would like to thank the financial support provided by the Brazilian Agencies Capes and CNPq.

References

  1. 1.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    E. Brito, A. Freitas, T. Silva, S. Azevedo, Eur. Phys. J. B 88, 153 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    P.R. Buseck, S.J. Tsipursky, R. Hettich, Science 257(5067), 215–217 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    H. Lipson, A.R. Stokes, Nature 149(3777), 328 (1942)ADSCrossRefGoogle Scholar
  5. 5.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    H. Jang, Y.J. Park, X. Chen, T. Das, M. Kim, J. Ahn, Adv. Mater. 28, 4184 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Zandiatashbar, G. Lee, S. An, S. Lee, N. Mathew, M. Terrones, T. Hayashi, C.R. Picu, J. Hone, N. Koratkar, Nat. Commun. 5, 3186 (2014)CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, M. Geng, H. Zhang, Chin. Sci. Bull. 57, 3086 (2012)CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, L. Zhang, C. Zhou, Chem. Res. 46(10), 2329 (2013)CrossRefGoogle Scholar
  11. 11.
    A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    S. Sadhukhana, T.K. Ghosha, D. Ranad, I. Roya, A. Bhattacharyyaa, G. Sarkara, M. Chakrabortyc, D. Chattopadhyaya, Mater. Res. Bull. 79, 41 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Soldano, A. Mahmood, E. Dujardin, Carbon 48, 2127 (2010)CrossRefGoogle Scholar
  14. 14.
    C. Berger, Z.M. Song, X.B. Li, X.S. Wu, N. Brown, C. Naud, D. Mayou, T.B. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science, 312, 1191 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    X.Y. Yang, X. Dou, A. Rouhanipour, L.J. Zhi, H.J. Rader, K. Mullen, J. Am. Chem. Soc. 130, 4216 (2008)CrossRefGoogle Scholar
  16. 16.
    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nat. Photon. 4, 611 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    P. Avouris, F. Xia, MRS Bull. 37, 1225 (2012)CrossRefGoogle Scholar
  18. 18.
    K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 192 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Nat. Nano 9, 780 (2014)CrossRefGoogle Scholar
  20. 20.
    Q. Tang, X. Wang, P. Yang, B. He, Angew. Chem. Int. Ed. 55, 5243 (2016)CrossRefGoogle Scholar
  21. 21.
    K. Mak, L. Ju, F. Wang, T.F. Heinz, Solid State Commun. 152, 1341 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    S.S. Yamijala, A. Bandyopadhyay, S.K. Pati, J. Phys. Chem. C 117, 23295 (2013)CrossRefGoogle Scholar
  24. 24.
    G. Pirruccio, L.M. Moreno, G. Lozano, J.G. Rivas, ACS Nano 7, 4810 (2013)CrossRefGoogle Scholar
  25. 25.
    C. Si, Z. Suna, F. Liu, Nanoscale 8, 3207 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Nano Lett. 9(10), 3430 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    S.V. Kryuchkov, E.I. Kukhar, J. Mod. Phys. 3, 994 (2012)CrossRefGoogle Scholar
  28. 28.
    L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Adv. Mater. 21, 4726 (2009)Google Scholar
  29. 29.
    T. Alonso-Lanza, A. Ayuela, F. Aguilera-Granja, Phys. Chem. Chem. Phys. 18, 21913 (2016)CrossRefGoogle Scholar
  30. 30.
    E.J.G. Santos, A. Ayuela, D. Sánchez-Portal. N. J. Phys. 12, 053012 (2010)CrossRefGoogle Scholar
  31. 31.
    R. Nascimento, J.R. Martins, R.J.C. Batista, H. Chacham, J. Phys.Chem. C 119, 5055 (2015)CrossRefGoogle Scholar
  32. 32.
    P. Rani, V.K. Jindal, RSC Adv. 3, 802 (2013)CrossRefGoogle Scholar
  33. 33.
    S. Kawai, S. Saito, S. Osumi, S. Yamaguchi, A.S. Foster, P. Spijker, E. Meyer, Nat. Commun. 6 (2015)Google Scholar
  34. 34.
    P.A. Denis, Chem. Phys. Chem. 15, 3994 (2014)CrossRefGoogle Scholar
  35. 35.
    N. Creange, C. Constantin, J. Zhu, A.V. Balatsky, J.T. Haraldsen, Adv. Cond. Mat. Phys. 635019, 7 (2015)Google Scholar
  36. 36.
    JdaR. Martins, H. Chacham, Am. Chem. Soc. 5(1), 385 (2011)Google Scholar
  37. 37.
    M.S.C. Mazzoni, R.W. Nunes, S. Azevedo, H. Chacham, Phys. Rev. B 73, 073108 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, J. Chem. Phys. 21, 6 (1953)CrossRefGoogle Scholar
  39. 39.
    S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Science 220, 4598, 671 (1983)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    V. Cerny, J. Opt. Theory Appl. 45, 41 (1985)CrossRefGoogle Scholar
  41. 41.
    D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quant. Chem. 65, 453 (1997)CrossRefGoogle Scholar
  42. 42.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)ADSCrossRefGoogle Scholar
  43. 43.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)ADSCrossRefGoogle Scholar
  45. 45.
    G.P.P. Giuseppe Grosso, Solid State Physics, 2nd ed. Academic Press, London (2013)Google Scholar
  46. 46.
    G.G. Martin Dressel, Electrodynamics of Solids: Optical Properties of Electrons in Matter, 1st ed. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  47. 47.
    P.A. Denis, C.P. Huelmo, Carbon 87, 106 (2015)CrossRefGoogle Scholar
  48. 48.
    P.A. Denis, Comput. Theor. Chem. 1097, 40 (2016)CrossRefGoogle Scholar
  49. 49.
    N. Gaston, A.J. Parker, Chem. Phys. Lett. 501, 375 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • E. Brito
    • 1
  • L. Leite
    • 1
  • Sergio Azevedo
    • 1
    Email author
  • J. R. Martins
    • 2
  • J. R. Kaschny
    • 3
  1. 1.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Departamento de FísicaUniversidade Federal do PiauíTeresinaBrazil
  3. 3.Instituto Federal da Bahia-Campus Vitoria da ConquistaVitória da ConquistaBrazil

Personalised recommendations