Applied Physics A

, 125:26 | Cite as

Improved broadband antireflection in MoO3/GaAs heterojunction

  • Mukaddar SkEmail author


Large area surface micro-structuring is most commonly used to reduce the reflection loss and improve the light absorption in solar cells, photo-detectors and image sensors. Herein, chemically prepared textured GaAs with improved absorption in the entire range of the solar spectrum is investigated using UV–Vis–NIR spectrometer, showing that an average specular reflectance can be reduced to ~ 0.2% in the wavelength range of 3000–300 nm. The sputtered MoO3 thin film (10 nm) on textured GaAs further reduces the reflection loss down to ~ 0.1% (average value) in same wavelength range, i.e., 300–3000 nm. The phase, morphology, composition, and transport properties of the thin films were investigated using XRD, SEM, AFM, XPS, and Keithley source meter, respectively. SEM and AFM scanning show highly ordered elongated microstructure has been induced on pristine GaAs substrate after wet chemical etching. XRD analysis shows amorphous nature of the MoO3 thin film. In addition, XPS studies confirm that MoO3 thin film present on the surface of textured GaAs. Moreover, hole-blocking property of the MoO3 thin film has been studied with the help of Anderson model. Further, current–voltage characteristics (under dark condition) show rectifying behavior of the heterojunction (Ag/MoO3/GaAs/Ag). Hence, the present study is not only important for the basic understanding of charge transports across the heterojunction, but also to also to design hole-blocking-based solar cell.


  1. 1.
    R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam, 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90(18), 183516 (2007)CrossRefADSGoogle Scholar
  2. 2.
    P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, Y.-C. Chang, Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns. Adv. Mater. 21(16), 1618–1621 (2009)CrossRefGoogle Scholar
  3. 3.
    H.J. Joyce, C.J. Docherty, Q. Gao, H.H. Tan, C. Jagadish, J. Lloyd-Hughes, L.M. Herz, M.B. Johnston, Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy. Nanotechnology 24, 214006 (2013)CrossRefADSGoogle Scholar
  4. 4.
    Y.M. Song, S.Y. Bae, J.S. Yu, Y.T. Lee, Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lens-like shape transfer. Opt. Lett. 34(11), 1702–1704 (2009)CrossRefADSGoogle Scholar
  5. 5.
    Y. Kang, D. Liang, S. Mehra, Y. Huo, Y. Chen, M.G. Christoforo, A. Salleo, J.S. Harris, J. Nanomater. (2015). CrossRefGoogle Scholar
  6. 6.
    X. Yin, C. Battaglia, Y. Lin, K. Chen, M. Hettick, M. Zheng, C.-Y. Chen, D. Kiriya, A. Javey, 19.2% efficient InP heterojunction solar cell with electron-selective TiO2 contact. ACS Photonics 1, 1245–1250 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Chhajed, M.F. Schubert, J.K. Kim, E.F. Schubert, Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics. Appl. Phys. Lett. 93(25), 251108 (2008)CrossRefADSGoogle Scholar
  8. 8.
    K.C. Sahoo, Y. Li, E.Y. Chang, Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells. IEEE Trans. Electron. Dev. 57(10), 2427–2433 (2010)CrossRefADSGoogle Scholar
  9. 9.
    B.-J. Kim, J. Kim, Opt. Express 19(S3), A326 (2011)CrossRefGoogle Scholar
  10. 10.
    J.A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, M. Acree, Toward perfect antireflection coatings: numerical investigation. Appl. Opt. 41(16), 3075–3083 (2002)CrossRefADSGoogle Scholar
  11. 11.
    C. Martinet, V. Paillard, A. Gagnaire, J. Joseph, Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating. J. Non Cryst. Solids 216, 77–82 (1997)CrossRefADSGoogle Scholar
  12. 12.
    Y. Song, K. Choi, D.-H. Jun, J. Oh, Opt. Express 25(20), 23863 (2017)CrossRefADSGoogle Scholar
  13. 13.
    K.N. Nguyen, P. Basset, F. Marty, Y. Leprince-Wang, T. Bourouina, J. Appl. Phys. 113, 194903 (2013)CrossRefADSGoogle Scholar
  14. 14.
    K.X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, Nano Lett. 12, 1616 (2012)CrossRefADSGoogle Scholar
  15. 15.
    M.A. Green, Prog. Photovoltaics Res. Appl. 10, 235 (2002)CrossRefGoogle Scholar
  16. 16.
    M.L. Brongersma, Y. Cui, S. Fan, Nat. Mater. 13, 451 (2014)CrossRefADSGoogle Scholar
  17. 17.
    G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, C. Seassal, J. Appl. Phys. 108, 123102 (2010)CrossRefADSGoogle Scholar
  18. 18.
    A. Lin, Y.-K. Zhong, S.M. Fu, J. Appl. Phys. 114, 233104 (2013)CrossRefADSGoogle Scholar
  19. 19.
    Y. Kanamori, E. Roy, Y. Chen, Antireflection sub-wavelength gratings fabricated by spin-coating replication. Microelectron. Eng. 78–79, 287–293 (2005)CrossRefGoogle Scholar
  20. 20.
    C. Aydin, A. Zaslavsky, G. Sonek, J. Goldstein, Reduction of reflection losses in ZnGeP 2 using moth-eye antireflection surface relief structures. Appl. Phys. Lett. 80(13), 2242–2244 (2002)CrossRefADSGoogle Scholar
  21. 21.
    Z. Yu, H. Gao, W. Wu, H. Ge, S.Y. Chou, Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff. J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003)CrossRefGoogle Scholar
  22. 22.
    S.W. Maclaren, J.E. Baker, N.L. Finnegan, C.M. Loxton, Surface roughness development during sputtering of GaAs and InP: evidence for the role of surface diffusion in ripple formation and sputter cone development. J. Vac. Sci. Technol. A 10(3), 468–476 (1992)CrossRefADSGoogle Scholar
  23. 23.
    E.A. Caridi, T.Y. Chang, Improved techniques for orientation of (100) InP and GaAs wafer. J. Electrochem. Soc. Solid State Sci. Technol. 131(6), 1440–1441 (1984)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of EngineeringIndian Institute of Technology MandiKamandIndia

Personalised recommendations