Applied Physics A

, 125:28 | Cite as

Comparative study of radiation defect dynamics in 3C-SiC by X-ray diffraction, Raman scattering, and ion channeling

  • L. B. Bayu AjiEmail author
  • E. Stavrou
  • J. B. Wallace
  • A. Boulle
  • A. Debelle
  • S. O. Kucheyev


At moderately elevated temperatures, radiation defects in SiC exhibit pronounced dynamic annealing, which remains poorly understood. Here, we study 3C-SiC bombarded at 100 \(^{\circ }\)C with pulsed beams of 500 keV Ar ions. Radiation damage is monitored by a combination of X-ray diffraction, Raman scattering, and ion channeling. Similar damage buildup behavior but with different defect relaxation time constants, ranging from \(\sim 1\) to \(\sim 6\) ms, is observed for the different types of lattice defects probed by these techniques. A correlation between relaxation times and the nature of the defects is proposed. These results reveal additional complexity of radiation defect dynamics in SiC and demonstrate that results of different defect characterization techniques are needed for a better understanding of dynamic annealing processes in solids.



Work at LLNL was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. J.B.W acknowledges the LGSP for funding.


  1. 1.
    A. Fissel, Artificially layered heteropolytypic structures based on SiC polytypes: molecular beam epitaxy, characterization and properties. Phys. Rep. 379, 149 (2003)CrossRefADSGoogle Scholar
  2. 2.
    L.L. Snead, T. Nozawa, Y. Katoha, T.-S. Byun, S. Kondo, D.A. Petti, Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371, 329 (2007)CrossRefADSGoogle Scholar
  3. 3.
    L. Jamison, K. Sridharan, S. Shannon, I. Szlufarska, Temperature and irradiation species dependence of radiation response of nanocrystalline silicon carbide. J. Mater. Res. 29, 2871 (2014)CrossRefADSGoogle Scholar
  4. 4.
    H. Inui, H. Mori, A. Suzuki, H. Fujita, Electron-irradiation-induced crystalline-to-amorphous transition in \(\beta\)-SiC single crystals. Philos. Mag. B 65, 1 (1992)CrossRefGoogle Scholar
  5. 5.
    W.J. Weber, N. Yu, L.M. Wang, Irradiation-induced amorphization in \(\beta\)-SiC. J. Nucl. Mater. 253, 53 (1998)CrossRefGoogle Scholar
  6. 6.
    J.B. Wallace, L.B. Bayu Aji, L. Shao, S.O. Kucheyev, Time constant of defect relaxation in ion-irradiated 3C-SiC. Appl. Phys. Lett. 106, 202102 (2015)CrossRefADSGoogle Scholar
  7. 7.
    J.B. Wallace, L.B. Bayu Aji, T.T. Li, L. Shao, S.O. Kucheyev, Damage buildup in Ar-ion-irradiated 3C-SiC at elevated temperatures. J. Appl. Phys. 118, 105705 (2015)CrossRefADSGoogle Scholar
  8. 8.
    L.B. Bayu Aji, J.B. Wallace, S.O. Kucheyev, Effects of collision cascade density on radiation defect dynamics in SiC. Sci. Rep. 7, 44703 (2017)CrossRefADSGoogle Scholar
  9. 9.
    L.B. Bayu Aji, T.T. Li, J.B. Wallace, S.O. Kucheyev, Dose-rate dependence of damage buildup in 3C-SiC. J. Appl. Phys. 121, 235106 (2017)CrossRefADSGoogle Scholar
  10. 10.
    A. Boulle, A. Debelle, J.B. Wallace, L.B. Bayu Aji, S.O. Kucheyev, The amorphization of 3C-SiC irradiated at moderately elevated temperatures as revealed by X-ray diffraction. Acta Mater. 140, 250 (2017)CrossRefGoogle Scholar
  11. 11.
    M.T. Myers, S. Charnvanichborikarn, L. Shao, S.O. Kucheyev, Pulsed ion beam measurement of the time constant of dynamic annealing in Si. Phys. Rev. Lett. 109, 095502 (2012)CrossRefADSGoogle Scholar
  12. 12.
    J.B. Wallace, S. Charnvanichborikarn, L.B. Bayu Aji, M.T. Myers, L. Shao, S.O. Kucheyev, Radiation defect dynamics in Si at room temperature studied by pulsed ion beams. J. Appl. Phys. 118, 135709 (2015)CrossRefADSGoogle Scholar
  13. 13.
    L.C. Feldman, J.W. Mayer, S.T. Picraux, Materials Analysis by Ion Channeling (Academic Press, New York, 1982)Google Scholar
  14. 14.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter. Nucl. Instr. Methods B 268, 1818 (2010)CrossRefADSGoogle Scholar
  15. 15.
    M. Souilah, A. Boulle, A. Debelle, RaDMaX: a graphical program for the determination of strain and damage profiles in irradiated crystals. J. Appl. Cryst. 49, 311 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Debelle, A. Boulle, A. Chartier, F. Gao, W.J. Weber, Interplay between atomic disorder, lattice swelling, and defect energy in ion-irradiation-induced amorphization of SiC. Phys. Rev. B 90, 174112 (2014)CrossRefADSGoogle Scholar
  17. 17.
    J.H. Parker Jr., D.W. Feldman, M. Ashkin, Raman scattering by silicon and germanium. Phy. Rev. 155, 712 (1967)CrossRefADSGoogle Scholar
  18. 18.
    G. Roma, Linear response calculation of first order Raman spectra of point defects in silicon carbide. Phys. Stat. Sol. A 213, 2995 (2016)CrossRefADSGoogle Scholar
  19. 19.
    H. Harima, Raman scattering characterization on SiC. Microelectron. Eng. 83, 126 (2006)CrossRefGoogle Scholar
  20. 20.
    J. Huguet-Garcia, A. Jankowiak, S. Miro, R. Podor, E. Meslin, L. Thomé, Y. Serruys, J.-M. Costantini, Characterization of the ion-amorphization process and thermal annealing effects on third generation SiC fibers and 6H-SiC. EPJ Nuclear Sci. Technol. 1, 8 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Sorieul, J.-M. Costantini, L. Gosmain, L. Thomé, J.-J. Grob, Raman spectroscopy study of heavy-ion-irradiated \(\alpha\)-SiC. J. Phys. Condens. Matter 18, 5235 (2006)CrossRefGoogle Scholar
  22. 22.
    K.A. Levenberg, A method for the solution of certain problems in least squares. Q. Appl. Math. 2, 164 (1944)MathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Boulle, A. Debelle, Statistical nature of atomic disorder in irradiated crystals. Phys. Rev. Lett. 116, 245501 (2016)CrossRefADSGoogle Scholar
  24. 24.
    J.B. Wallace, L.B. Bayu Aji, L. Shao, S.O. Kucheyev, Fractal analysis of collision cascades in pulsed-ion-beam-irradiated solids. Sci. Rep. 7, 17574 (2017)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Department of Nuclear EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Institut de Recherche sur les CéramiquesCNRS UMR 7315, Centre Européen de la CéramiqueLimogesFrance
  4. 4.Centre de Sciences Nucléaires et de Sciences de la MatièreUniversité Paris-Sud, CNRS/IN2P3, Université Paris-SaclayOrsayFrance

Personalised recommendations