Advertisement

Applied Physics A

, 125:65 | Cite as

Investigation of Helmholtz resonator-based composite acoustic metamaterial

  • Semere Birhane Gebrekidan
  • Hak-Joon Kim
  • Sung-Jin SongEmail author
Article
  • 214 Downloads

Abstract

The emergence of composite metamaterials broadens the concept of exotic properties that are not found in nature. In this paper, a composite metamaterial composed of Helmholtz resonators and periodic arrangement of plate is investigated analytically and numerically and a new property of the structure is explored. The structure becomes transparent at the vicinity of plate cutoff frequency even though Helmholtz resonator attained a positive bulk modulus, which is not achieved using side hole metamaterial composite. The resonance absorption of Helmholtz resonator makes Helmholtz-based composites not to be used for applications that need higher transmission even though negative bulk modulus is achieved. In this paper, we also show that Helmholtz resonator-based composite metamaterials can be used as impedance matching layers. The Helmholtz resonator-based composite structure became transparent at the band gap region of Helmholtz resonator, where both components are below cutoff frequency. Further, based on cloaking concept we demonstrated its application to enhance transmission through skull layer. The transmission can be controlled by manipulating plate thickness and Helmholtz resonator dimension.

Notes

Acknowledgements

This research was supported by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01016264).

References

  1. 1.
    J. Zhu, J. Christensen, J. Jung, L.M. Moreno, X. Yin, L. Fok, X. Zhang, F.J. Garcia Vidal, Nat. Phys. 7, 52–55 (2011)CrossRefGoogle Scholar
  2. 2.
    X. Zhou, G. Hu, Appl. Phys. Lett. 98, 263510 (2011)CrossRefADSGoogle Scholar
  3. 3.
    S. Zhang, C. Xia, N. Fang, Phys. Rev. Lett. 106, 024301 (2011)CrossRefADSGoogle Scholar
  4. 4.
    L. Fok, M. Ambati, X. Zhang, MRS Bull. 33, 931 (2008)CrossRefGoogle Scholar
  5. 5.
    Z. Liu, C.T. Chan, P. Sheng, Phys. Rev. B 71, 014103 (2005)CrossRefADSGoogle Scholar
  6. 6.
    N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, X. Zhang, Nat. Mater. 5, 452–456 (2006)CrossRefADSGoogle Scholar
  7. 7.
    F. Bongard, H. Lissek, J.R. Mosig, Phys. Rev. B 82, 094306 (2010)CrossRefADSGoogle Scholar
  8. 8.
    S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, J. Phys. Condens. Matter 21, 175704 (2009)CrossRefADSGoogle Scholar
  9. 9.
    S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Phys. Lett. A 373, 4464 (2009)CrossRefADSGoogle Scholar
  10. 10.
    Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Science 289, 1734 (2000)CrossRefADSGoogle Scholar
  11. 11.
    Y. Ding, Z. Liu, C. Qiu, J. Shi, Phys. Rev. Lett 99, 093904 (2007)CrossRefADSGoogle Scholar
  12. 12.
    J. Li, C.T. Chan, Phys. Rev. E 70, 055602 (2004)CrossRefADSGoogle Scholar
  13. 13.
    S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Phys. Rev. Lett 104, 054301 (2010)CrossRefADSGoogle Scholar
  14. 14.
    Y. Cheng, J. Xu, X. Liu, Phys. Rev. B 77, 045134 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Y. Ding, E.C. Statharas, K. Yao, M. Hong, Appl. Phys. Lett. 110, 241902 (2017)CrossRefADSGoogle Scholar
  16. 16.
    W. Akl, A. Baz, J.Vib. Acoust. 135, 031001 (2013)CrossRefGoogle Scholar
  17. 17.
    Z. Chen, C. Xhe, L. Fan, S.Y. Zhang, X.J. Li, H. Zhang, J. Ding, Sci. Rep. 6, 30254 (2016)CrossRefADSGoogle Scholar
  18. 18.
    G.T. Clement, K. Hynynen, Phys. Med. Biol. 47, 1219 (2002)CrossRefGoogle Scholar
  19. 19.
    N. Mivancevich, G.F. Pinton, H.A. Nicoletto, E. Bennett, D.T. Laskowitz, S.W. Smith, Ultrasound Med. Biol. 34, 1387 (2008)CrossRefGoogle Scholar
  20. 20.
    T. Inoue, M. Ohta, S. Takahashi, IEEE Trans. Ultra Ferro Freq. Control 34(1), 8–16 (1987)CrossRefGoogle Scholar
  21. 21.
    P.C. Pedersen, O. Tretiak, P. He, J. Acoust. Soc. Am. 72, 327 (1982)CrossRefADSGoogle Scholar
  22. 22.
    R. Fleury, A. Alù, J. Acoust. Soc. Am. 136(6), 2935 (2014)CrossRefADSGoogle Scholar
  23. 23.
    G. D’Aguanno, K.Q. Le, R. Trimm, A. Alu, N. Mattiucci, A.D. Mathias, N. Akozbek, M.J. Bloemer, Sci. Rep. 2, 240 (2012)CrossRefGoogle Scholar
  24. 24.
    C. Shen, J. Xu, N.X. Fang, Y. Jing, Phys. Rev. X 4, 041033 (2014)Google Scholar
  25. 25.
    Z. Li, D.Q. Yang, S.L. Liu, S.Y. Yu, M.H. Lu, J. Zhu, S.T. Zhang, M.W. Zhu, X.S. Guo, H.D. Wu, X.L. Wang, Y.F. Chen, Sci. Rep. 7, 42863 (2017)CrossRefADSGoogle Scholar
  26. 26.
    A.W. Leissa, NASA SP-160, U.S.Government Printing Office, Washington, D.C (1969)Google Scholar
  27. 27.
    M.R. Haddara, S. Cao, Mar. Struct. 9(10), 913–933 (1996)CrossRefGoogle Scholar
  28. 28.
    T. Huang, C. Shen, Y. Jing, J. Acoust. Soc. Am. 140(2), 908–916 (2016)CrossRefADSGoogle Scholar
  29. 29.
    C.M. Park, J.J. Park, S.H. Lee, Y.M. Seo, C.K. Kim, S.H. Lee, Phys. Rev. Lett 107, 194301 (2011)CrossRefADSGoogle Scholar
  30. 30.
    H. Chen, C.T. Chan, Appl. Phys. Lett. 91, 183518 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringSungkyunkwan UniversitySuwonSouth Korea

Personalised recommendations