Applied Physics A

, 125:24 | Cite as

Formation of non-alloyed Ti/Al/Ni/Au low-resistance ohmic contacts on reactively ion-etched n-type GaN by surface treatment for GaN light-emitting diodes applications

  • Kuldip SinghEmail author
  • Ashok Chauhan
  • Manish Mathew
  • Rajesh Punia
  • Sher Singh Meena
  • Nidhi Gupta
  • Rajender Singh Kundu


Ti/Al/Ni/Au (30/120/20/100 nm) non-alloyed ohmic contacts on reactively ion-etched n-GaN have been obtained by thermal annealing in N2 + O2 ambient prior to metal contacts deposition. After surface treatment, contacts show the linear current–voltage (IV) characteristics with specific contact resistance (SCR) of 2.91 × 10−5 Ω-cm2 without any post-deposition annealing, whereas, SCR of untreated sample has been found 1.02 × 10−4 Ω-cm2. The improvement in SCR of Ti/Al/Ni/Au contacts with this process may be attributed to formation of n+-highly doped layer due to presence of oxygen during thermal annealing. A further increase in SCR of non-treated sample from 1.02 × 10−4 Ω-cm2 to 3.54 × 10−4 Ω-cm2, has been observed on further annealing of contacts at 550 °C in N2 + O2 ambient for 5 min, which is generally an essential condition for formation of low-resistance highly transparent p-contact on p-GaN during fabrication of conventional GaN light-emitting diodes (LEDs). Based on X-ray photoelectron spectroscopy results, we found that there is increase in Ga 3d photoelectron binding energy with this surface treatment, which indicates a shift of Fermi level closure to conduction band, resulting in decrease of Schottky barrier height (SBH). The reduction in SBH is responsible for formation of low-resistance Ohmic contacts on n-GaN. Such non-alloyed n-contacts formed on thermally annealed reactively etched n-GaN surface may open for fabrication of more efficient conventional GaN LEDs. In addition, the forward voltage of GaN LED fabricated by present suggested process lowered by an amount of 0.37 V at 100 mA compared to standard process.



This work was supported by council of scientific and industrial research (CSIR), New Delhi, India under network programme (PSC-0102).


  1. 1.
    M. Koike, N. Shibata, H. Kato, Y. Takahashi, IEEE J. Sel. Top. Quantum Electron. 8, 271–277 (2002)CrossRefADSGoogle Scholar
  2. 2.
    S.P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Kelkar, U. Mehra, J.S. Speck, S. Nakamura, Acta Mater. 61, 945–951 (2013)CrossRefGoogle Scholar
  3. 3.
    M.E. Lin, Z. Ma, F.Y. Huang, Z.F. Fan, L.H. Allen, H. Morkoc, Appl. Phys. Lett. 64, 1003–1005 (1994)CrossRefADSGoogle Scholar
  4. 4.
    J.K. Ho, C.S. Jong, C.C. Chiu, C.N. Huang, K.K. Shih, L.C. Chen, F.R. Chen, J.J. Kai, J. Appl. Phys. 86, 4491–4497 (1999)CrossRefADSGoogle Scholar
  5. 5.
    D.-F. Wang, F. Shiwei, C. Lu, A. Motayed, M. Jah, S.N. Mohammad, J. Appl. Phys. 89, 6214–6217 (2001)CrossRefADSGoogle Scholar
  6. 6.
    D.H. Youn, M.S. Hao, H. Sato, T. Sugahara, Y. Naoi, S. Sakai, Jpn. J. Appl. Phys. 37, 1768–1771 (1998)CrossRefADSGoogle Scholar
  7. 7.
    J.O. Song, J.-S. Ha, T.-Y. Seong, IEEE Trans. Electron Devices 57, 42–59 (2010)CrossRefADSGoogle Scholar
  8. 8.
    G. Greco, F. Iucolano, F. Roccaforte, Appl. Surf. Sci. 383, 324–345 (2016)CrossRefADSGoogle Scholar
  9. 9.
    F. Lin, B. Shen, S. Huang, F.J. Xu, H.Y. Yang, W.H. Chen, N. Ma, Z.X. Qin, G.Y. Zhang. 9th International Conference on Solid-State and Integrated-Circuit Technology (2008), pp 726–729Google Scholar
  10. 10.
    J.S. Kwak, J. Cho, S. Chae, O.H. Nam, C. Sone, Y. Park, Jpn. J. Appl. Phys. 40, 6221–6225 (2001)CrossRefADSGoogle Scholar
  11. 11.
    S.Y. Kim, H.W. Jang, J.-L. Lee, Appl. Phys. Lett. 82, 61–63 (2003)CrossRefADSGoogle Scholar
  12. 12.
    S.Y. Kim, H.W. Jang, J.-L. Lee, Phys. Stat. Sol. (c) 0, 214–218 (2002)Google Scholar
  13. 13.
    R.-H. Horng, D.-S. Wuu, Y.-C. Lien, W.-H. Lan, Appl. Phys. Lett. 79, 2925–2927 (2001)CrossRefADSGoogle Scholar
  14. 14.
    J.O. Song, K.-K. Kim, H. Kim, H.-G. Hong, H. Na, T.-Y. Seong, Electrochem. Solid State Lett. 10, H270–H272 (2007)CrossRefGoogle Scholar
  15. 15.
    W. Hou, T. Detchprohm, C. Wetzel, Int. J. High Speed Electron. Syst. 20, 521–525 (2011)CrossRefGoogle Scholar
  16. 16.
    G.K. Reeves, H.B. Harrision, IEEE Electron Device Lett. 3, 111–113 (1982)CrossRefADSGoogle Scholar
  17. 17.
    W. Hou, T. Detchprohm, C. Wetzel, Appl. Phys. Lett. 101, 242105-1–242105-4 (2012)ADSGoogle Scholar
  18. 18.
    S. Ruvimov, Z. Liliental-Weber, J. Washburn, K.J. Duxstad, E.E. Haller, Z.F. Fan, S.N. Mohammad, W. Kim, A.E. Botcharev, H. Morkoc, Appl. Phys. Lett. 69, 1556–1558 (1996)CrossRefADSGoogle Scholar
  19. 19.
    L. Pang, K. Kim, Mater. Sci. Semicond. Process. 29, 90–94 (2015)CrossRefGoogle Scholar
  20. 20.
    F. Iuconao, F. Roccaforte, A. Alberti, C. Bongiorno, S. Di Franco, V. Raineri, J. Appl. Phys. 100, 123706-1–123706-8 (2006)ADSGoogle Scholar
  21. 21.
    A.V. Davydov, A. Motayed, W.J. Boettinger, R.S. Gates, Q.Z. Xue, H.C. Lee, Y.K. Yoo, Phys. Stat. Sol. (c) 2, 2551–2554 (2005)CrossRefGoogle Scholar
  22. 22.
    C. Wetzel, T. Suski, A.W. Ager, E.R. Weber, E.E. Haller, S. Fischer, B.K. Meyer, R.J. Molnar, P. Perlin, N. Koike, H. Shibata, Kato, Y. Takahashi, Phys. Rev. Lett. 78, 3923–3926 (1997)CrossRefADSGoogle Scholar
  23. 23.
    A. Motayed, M.C. Wood, O.S. Diouf, R.D. Vispute, S.N. Mohammad, J. Appl. Phys. 93, 1087–1094 (2003)CrossRefADSGoogle Scholar
  24. 24.
    Z. Fan, S.N. Mohammad, W. Kim, Ö Aktas, A.E. Botchkarev, H. Morkoc, Appl. Phys. Lett. 68, 1672–1674 (1996)CrossRefADSGoogle Scholar
  25. 25.
    H.K. Cho, S.-K. Kim, J.S. Lee, J. Phys. D Appl. Phys. 41, 175107 (2008)CrossRefADSGoogle Scholar
  26. 26.
    M.-L. Lee, J.-K. Sheu, C.C. Hu, Appl. Phys. Lett. 91, 182106-1–182106-3 (2007)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kuldip Singh
    • 1
    • 4
    Email author
  • Ashok Chauhan
    • 1
    • 4
  • Manish Mathew
    • 1
  • Rajesh Punia
    • 2
  • Sher Singh Meena
    • 3
  • Nidhi Gupta
    • 3
  • Rajender Singh Kundu
    • 4
  1. 1.CSIR-Central Electronics Engineering Research InstitutePilaniIndia
  2. 2.Department of PhysicsMaharshi Dayanand UniversityRohtakIndia
  3. 3.Solid State DivisionBhabha Atomic Research CentreMumbaiIndia
  4. 4.Department of PhysicsGuru Jambheshwar University of Science and TechnologyHisarIndia

Personalised recommendations