Applied Physics A

, 125:34 | Cite as

Selective bonding effect on microstructure and mechanical properties of (Al,N)-DLC composite films by ion beam-assisted cathode arc evaporation

  • Bing ZhouEmail author
  • Bin Xu
  • Yue Xu
  • Shengwang Yu
  • Yanxia Wu
  • Yucheng Wu
  • Zhubo LiuEmail author


Using weak-carbide metal Al and carbide non-metal N elements as co-dopant, (Al,N)-DLC composite films were prepared by DC- and pulse cathode arc technique. Microstructure, compositions, morphology and mechanical properties of (Al,N)-DLC films were investigated in the dependence of pulse frequency and target current by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy, nanoindentation, surface profilometer and nano-scratch. Raman and XPS results showed that the size of Csp2 clusters decreases and the content of Csp3 bonds increases for the (Al,N)-DLC films at the low pulse frequency with low target current or the high target current with high frequency. The contents of C–N and N–sp3C bonds increase with the target current increases. The (Al,N)-DLC films at higher target current contained a high content of N atoms and Al–N bonds. Low pulse frequency with high target current improved the hardness and toughness of (Al,N)-DLC films corresponding to the variation of microstructure parameters (the size and ordering of Csp2 clusters) and compositions (N–sp3C and Al–N bonds).



This work was supported by the National Natural Science Foundation of China (51502193, 51505318, 51811530058), Shanxi Provincial Key R&D Program (201603D421035), Natural Science Foundation (201601D021057), Open Foundation of Key Laboratory of Advanced Functional Materials and Devices of Anhui Province (45000-411104/011), and Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (2015rst).


  1. 1.
    J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129–281 (2002)CrossRefGoogle Scholar
  2. 2.
    T. Roy, D. Choudhury, S. Ghosh, A.B. Mamat, B. Pingguan-Murphy, Improved friction and wear performance of micro dimpled ceramic-on-ceramic interface for hip joint arthroplasty. Ceram. Int. 41(1A), 681–690 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Vetter, 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 257, 213–240 (2014)CrossRefGoogle Scholar
  4. 4.
    P.C. Kelires, Intrinsic stress and stiffness variations in amorphous carbon. Diam. Relat. Mater. 10, 139–144 (2001)CrossRefADSGoogle Scholar
  5. 5.
    B. Zhou, X. Jiang, A.V. Rogachev, R. Shen, D. Sun, D.G. Piliptsou, L. Lu, A comparison study between atomic and ionic nitrogen doped carbon films prepared by ion beam assisted cathode arc deposition at various pulse frequencies. Appl. Surf. Sci. 287, 150–158 (2013)CrossRefADSGoogle Scholar
  6. 6.
    T.F. Zhang, Z.X. Wan, J.C. Ding, S.H. Zhang, Q.M. Wang, K. HoKim, Microstructure and high-temperature tribological properties of Si-doped hydrogenated diamond-like carbon films. Appl. Surf. Sci. 435, 963–973 (2018)CrossRefADSGoogle Scholar
  7. 7.
    X. Liu, J. Hao, Y. Xie, Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films. Appl. Surf. Sci. 379, 358–366 (2016)CrossRefADSGoogle Scholar
  8. 8.
    Y.J. Jo, T.F. Zhang, M.J. Son, K.H. Kim, Synthesis and electrochemical of Ti-doped DLC films by a hybrid PVD/PECVD process. Appl. Surf. Sci. 433, 1184–1191 (2018)CrossRefADSGoogle Scholar
  9. 9.
    L. Sun, P. Guo, X. Li, A. Wang, Comparative study on structure and wetting properties of diamond-like carbon films by W and Cu doping. Diam. Relat. Mater. 73, 278–284 (2017)CrossRefADSGoogle Scholar
  10. 10.
    D. Savchenko, V. Vorlíček, A. Prokhorov, E. Kalabukhova, J. Lančok, M. Jelínek, Raman and EPR spectroscopic studies of chromium-doped diamond-like carbon films. Diam. Relat. Mater. 83, 30–37 (2018)CrossRefADSGoogle Scholar
  11. 11.
    S. Zhang, X.L. Bui, Y.Q. Fu, Magnetron-sputtered nc-TiC/a-C(Al) tough nanocomposite coatings. Thin Solid Films 467, 261–266 (2004)CrossRefADSGoogle Scholar
  12. 12.
    X. Li, P. Guo, L. Sun, X. Zuo, D. Zhang, P. Ke, A. Wang, Ti/Al co-doping induced residual stress reduction and bond structure evolution of amorphous carbon films: an experimental and ab initio study. Carbon 111, 467–475 (2017)CrossRefGoogle Scholar
  13. 13.
    W. Yang, Y.C. Guo, D.P. Xu, Microstructure and properties of (Cr:N)-DLC films deposited by a hybrid beam technique. Surf. Coat. Technol. 261, 398–403 (2015)CrossRefGoogle Scholar
  14. 14.
    C.Q. Guo, Z.L. Pei, D. Fan, J. Gong, C. Sun, Microstructure and tribomechanical properties of (Cr, N)-DLC/DLC multilayer films deposited by a combination of filtered and direct cathodic vacuum arcs. Diam. Relat. Mater. 60, 66–74 (2015)CrossRefADSGoogle Scholar
  15. 15.
    B. Zhou, Z. Wang, Z. Liu, D.G. Piliptsou, B. Xu, S. Yu, Y. Wu, A.V. Rogachev, Synthesis and characterization of Ti and N binary-doped ɑ-C films deposited by pulse cathode arc with ionic source assistant. Surf. Interface Anal. 50, 506–515 (2018)CrossRefGoogle Scholar
  16. 16.
    B. Zhou, A.V. Rogachev, Z. Liu, X. Jiang, R. Shen, A.S. Rudenkov, Structure and mechanical properties of diamond-like carbon films with copper functional layer by cathode arc evaporation. Surf. Coat. Technol. 208, 101–108 (2012)CrossRefGoogle Scholar
  17. 17.
    B.K. Gupta, B. Bhushan, Micromechanical properties of amorphous carbon coatings deposited by different deposition techniques. Thin Solid Films 270, 391–398 (1995)CrossRefADSGoogle Scholar
  18. 18.
    F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970)CrossRefADSGoogle Scholar
  19. 19.
    S. Neuville, Quantum electronic mechanisms of atomic rearrangements during growth of hard carbon films. Surf. Coat. Technol. 206, 703–726 (2011)CrossRefGoogle Scholar
  20. 20.
    R. McCann, S.S. Roy, P. Papakonstantinou, J.A. McLaughlin, S.C. Ray, Spectroscopic analysis of a-C and a-CNx films prepared by ultrafast high repetition rate pulsed laser deposition. J. Appl. Phys. 97, 073522 (2005)CrossRefADSGoogle Scholar
  21. 21.
    S. Prawer, K. Nugent, D. Jamieson, The Raman spectrum of amorphous diamond. Diam. Relat. Mater. 7, 106–110 (1998)CrossRefADSGoogle Scholar
  22. 22.
    D. Sheeja, B.K. Tay, J.Y. Sze, L.J. Yu, S.P. Lau, A comparative study between pure and Al-containing amorphous carbon films prepared by FCVA technique together with high substrate pulse biasing. Diam. Relat. Mater. 12, 2032–2036 (2003)CrossRefADSGoogle Scholar
  23. 23.
    W. Dai, J. Liu, D. Geng, P. Guo, J. Zheng, Q.M. Wang, Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system. Appl. Surf. Sci. 388, 503–509 (2016)CrossRefADSGoogle Scholar
  24. 24.
    M.J. Son, T.F. Zhang, Y.J. Jo, K.H. Kim, Enhanced electrochemical properties of the DLC films with an arc interlayer, nitrogen doping and annealing. Surf. Coat. Technol. 329, 77–85 (2017)CrossRefGoogle Scholar
  25. 25.
    Y. Cai, R.Y. Wang, H.D. Liu, C. Luo, Q. Wan, Y. Liu, H. Chen, Y.M. Chen, Q.S. Mei, B. Yang, Investigation of (Ti:N)-DLC coatings prepared by ion source assisted cathodic arc ion-plating with varying Ti target currents. Diam. Relat. Mater. 69, 183–190 (2016)CrossRefADSGoogle Scholar
  26. 26.
    R. Chen, J.P. Tu, D.G. Liu, Y.J. Mai, C.D. Gu, Microstructure, mechanical and tribological properties of TiCN nanocomposite films deposited by DC magnetron sputtering. Surf. Coat. Technol. 205(21–22), 5228–5234 (2011)CrossRefGoogle Scholar
  27. 27.
    D. Briggs, M.P. Seah, in Practical Surface Analysis A2, Auger and X-ray Photoelectron Spectroscopy, vol. 1, 2nd edn. (Wiley, Chichester, Aarau, 1994), p. 649Google Scholar
  28. 28.
    Y.S. Park, B. Hong, Structural and tribological properties of nitrogen doped amorphous carbon thin films synthesized by CFUBM sputtering method for protective coatings. Appl. Surf. Sci. 255, 3913–3917 (2009)CrossRefADSGoogle Scholar
  29. 29.
    W.T. Zheng, P.J. Cao, J.J. Li, X. Wang, Z.S. Jin, Chemical bonding of CNx films synthesized by nitrogen ion implantation into diamond and graphite. Surf. Coat. Technol. 173, 213–218 (2003)CrossRefGoogle Scholar
  30. 30.
    N. Hellgren, M.P. Johansson, E. Broitman, L. Hultman, J.E. Sundgren, Role of nitrogen in the formation of hard and elastic CNx thin films by reactive magnetron sputtering. Phys. Rev. B 59, 5162 (1999)CrossRefADSGoogle Scholar
  31. 31.
    W.J. Gammon, O. Kraft, A.C. Reilly, B.C. Holloway, Experimental comparison of N(1 s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds. Carbon 41, 1917–1923 (2003)CrossRefGoogle Scholar
  32. 32.
    J. Neidhardt, L. Hultman, Z. Czigány, Correlated high resolution transmission electron microscopy and X-ray photoelectron spectroscopy studies of structured CNx (0 < x < 0.25) thin solid films. Carbon 42, 2729–2734 (2004)CrossRefGoogle Scholar
  33. 33.
    P. Motamedi, K. Cadien, XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition. Appl. Surf. Sci. 315, 104–109 (2014)CrossRefADSGoogle Scholar
  34. 34.
    A. Mahmood, R. Machorr, S. Muhl, J. Heiras, F.F. Castillón, M.H. Farıás, E. Andrade. Optical and surface analysis of DC-reactive sputtered AlN films. Diam. Relat. Mater. 12, 1315–1321 (2003)CrossRefADSGoogle Scholar
  35. 35.
    Y.Z. Zhuang, X.H. Jiang, A.V. Rogachev, D.G. Piliptsou, B. Ye, G.H. Liu, T. Zhou, A.S. Rudenkov, Influences of pulse frequency on the structure and anti-corrosion properties of the a-C:Cr films. Appl. Surf. Sci. 351, 1197–1203 (2015)CrossRefGoogle Scholar
  36. 36.
    Y.T. Cheng, C.M. Cheng, Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73, 614–616 (1998)CrossRefADSGoogle Scholar
  37. 37.
    F. Cai, X. Huang, Q. Yang, Mechanical properties, sliding wear and solid particle erosion behaviors of plasma enhanced magnetron sputtering CrSiCN coating systems. Wear 324–325, 27–35 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Zhang, D. Sun, Y. Fu, H. Du, Toughening of hard nanostructural thin films: a critical review. Surf. Coat. Technol. 198, 2–8 (2005)CrossRefGoogle Scholar
  39. 39.
    V. Bellido-Gonzalez, N. Stefanopoulos, F. Deguilhen, Friction monitored scratch adhesion testing. Surf. Coat. Technol. 74, 884–889 (1995)CrossRefGoogle Scholar
  40. 40.
    X. Li, B. Bhushan, Micro/nanomechanical and tribological characterization of ultrathin amorphous carbon coatings. J. Mater. Res. 14, 2328–2337 (1999)CrossRefADSGoogle Scholar
  41. 41.
    S. Sundararajan, B. Bhushan, Development of a continuous microscratch technique in an atomic force microscope and its application to study scratch resistance of ultrathin hard amorphous carbon coatings. J. Mater. Res. 16, 437–445 (2001)CrossRefADSGoogle Scholar
  42. 42.
    S. Zhang, D. Sun, Y. Fu, H. Du, Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films. Thin Solid Films 447, 462–467 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Material Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Key Laboratory of Advanced Functional Materials and Devices of Anhui Province (HFUT)HefeiChina
  3. 3.College of Mechanical EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations