Applied Physics A

, 125:38 | Cite as

Effect of Er3+ on NaSrB glass: thermoluminescence and structural analysis

  • Dinesh Kumar
  • S. M. Rao
  • Supreet Pal SinghEmail author


The present work reports the investigations on \({\text {Er}}^{3+}\)-doped sodium–strontium–borate glasses for their structural, optical and thermoluminescence (TL) properties. While the amorphous nature of the prepared glasses is confirmed by the powdered X-ray diffraction (XRD), some interesting features were found in the structure and Fourier-transform infrared (FTIR) studies such as the nanocrystallization and the presence of \({\text {BO}}_3\) and \({\text {BO}}_4\) structural units. Some physical parameters such as ion concentration, polaron radius, inter-nuclear distance, and field strength are calculated and analyzed. Optical band gap was found to be sensitive to the concentration of the dopants. TL glow curve exhibits a single peak but it shifts with variation in concentration of \({\text {Er}}_2{\text {O}}_3\). Calculation of kinetic parameters show that the prepared glasses exhibit second-order kinetics. The effective atomic number \({\text {(Z}}_{\text{eff}})\) of prepared glasses is also calculated which indicates their suitability for application in radiation dosimetry.



The authors are very grateful to Scientific Engineering & Research Board (SERB), Govt. of India, for providing funds (Vide number-SB/FTP/PS-085/2014) to carry out this research work. The authors also would like to take this opportunity to thank the Inter University Accelerator Centre (IUAC), New Delhi, India, for providing irradiation facilities. The authors are also thankful to Dr. Sanjay, Dr. Ashok Kumar, Dr Vimal Mehta, Dr Baldev Singh, Dr. Pooja Seth, Mr. Birendra Singh (IUAC), Aayush Gupta and Gurdeep Singh Chahal for their invaluable inputs and suggestions.


  1. 1.
    Y.S.M. Alajerami, S. Hashim, W.M.S. Hassan, A.T. Ramli, A. Kasim, Optical properties of lithium magnesium borate glasses doped with \({\text{ Dy }^{3+}}\) and \({\text{ Sm }^{3+}}\) ions. Phys. B Condens. Matter 1026, 159–167 (2012)Google Scholar
  2. 2.
    N.S. Bajaj, S.K. Omanwar, Advances in synthesis and characterization of \({\text{ LiMgBO }_3:\text{ Dy }^{3+}}\). Optik 125, 4077–4080 (2014)Google Scholar
  3. 3.
    T.Y. Lim, H. Wagiran, R. Hussin, S. Hashim, M.A. Saeed, Physical and optical properties of dysprosium ion doped borate glasses. Phys. B 451, 63–67 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    E. Desurvire, M.N. Zervas, Erbium doped fiber amplifiers: principles and applications. Phys. Today 48, 53 (1995)CrossRefGoogle Scholar
  5. 5.
    C.K. Jayasankar, P. Babu, Optical properties of \({\text{ Sm }^{3+}}\) ions in lithium borate and lithium fluoroborate glasses. J. Alloys Compd. 307, 82–95 (2000)Google Scholar
  6. 6.
    M.H.A. Mhareb, S. Hashim, S.K. Ghoshal, Y.S.M. Alajerami, M.A. Saleh, M.M.A. Maqableh, N. Tamchek, Optical and erbium ion concentration correlation in lithium magnesium borate glass. Optik 126, 3638–3643 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    M.A. Marzouk, F.H. ElBatal, R.M.M. Morsi, Optical and FTIR absorption spectra of \({\text{ Ce }_2{\text{ O }}}\)-doped cadmium borate glasses and effect of gamma irradiation. Silicon 9, 105–110 (2017)Google Scholar
  8. 8.
    Y.S.M. Alajerami, S. Hashim, S.K. Ghoshal, M.A. Saleh, T. Kadni, M.I. Saripan, K. Alzimami, Z. Ibrahim, D.A. Bradley, The effect of \({\text{ TiO }_2}\) and \({\text{ MgO }}\) on thermoluminescence properties of a lithium potassium borate glass system. J. Phys. Chem. Solids 74, 1816–1822 (2013)Google Scholar
  9. 9.
    W.M. Pontusuchka, L.S. Kanashiro, L.C. Courrol, Luminescence mechanism for borate glasses: the role of local structural units. Phys. Chem. Glasses 27, 37–47 (2001)CrossRefGoogle Scholar
  10. 10.
    S.M. Del Nery, W.M. Pontuschka, C.G. Rouse, Luminescence quenching by iron in barium aluminoborate glasses. Phys. Rev. B 49, 3760–3765 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    M.M. Elkholy, Thermoluminescence of \(\text{ B }_2\text{ O }_3-\text{ Li }_2O\) glass system doped with \(\text{ MgO }\). J. Lumin. 130, 1880–1892 (2010)Google Scholar
  12. 12.
    M.R. Chialanza, J. Castiglioni, L. Fornaro, Crystallization as a way for inducing thermoluminescence in a lead boarte glass. J. Mater. Sci. 47, 2339–2344 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    M. Ignatovych, M. Fasoli, A. Kelemen, Thermoluminescence study of \(\text{ Cu }\), \(\text{ Ag }\) and \(\text{ Mn }\) doped lithium tetraboarte single crystals and glasses. Radiat. Phys. Chem. 81, 1528–1532 (2012)Google Scholar
  14. 14.
    D.L. Griscom, P.C. Taylor, D.A. Ware, P.J. Bray, ESR studies of lithium borate glasses and compounds \({\gamma }\)—irradiated at 77 K: evidence for a new interpretation of the trapped-hole centers associated with boron. J. Chem. Phys. 48, 5158–5173 (1968)Google Scholar
  15. 15.
    I. Rammadhan, S. Taha, H. Wagiran, Thermoluminescence characteristics of \(\text{ Cu }_2\text{ O }\) doped calcium lithium borate glass irradiated with Cobalt-60 gamma rays. J. Lumin. 186, 117–122 (2017)Google Scholar
  16. 16.
    R. Lopez, R. Gomez, Band-gap energy estimation for diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J. Sol Gel Sci. Technol. 61, 1–7 (2012)CrossRefGoogle Scholar
  17. 17.
    P. Kubelka, F. Munk, Ein beitrag zur optik der farbanstriche. Z. Tech. Phys. 12, 593–601 (1931)Google Scholar
  18. 18.
    P. Kubelka, New contributions to the optics of intensely light-scattering materials. Part I, J. Opt. Soc. Am. 38, 448 (1948)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    C. Mugoni, C. Gatto, A. Pla-Dalmau, C. Siligardi, Structure and luminescence properties of \(\text{ Dy }_2\text{ O }_3\) doped bismuth-borate glasses. J. Non Cryst. Solids 471, 295–300 (2017)Google Scholar
  20. 20.
    F. Berkemeier, S. Voss, A.W. Imre, H. Mehrer, Molar volume, glass transition temperature and ionic conductivity of Na and Rb-borate glasses in comparison with mixed Na–Rb borate glasses. J. Non Cryst. Solids 351(52), 3816–3825 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    J.A. Duffy, Electronic polarisability and related properties of the oxide ion. Phys. Chem. Glasses 30, 1 (1989)Google Scholar
  22. 22.
    G. Srinivas, B. Ramesh, J. Siva Kumar, Md Shareefuddin, M.N. Chary, R. Sayanna, Mixed alkali effect in the physical and optical properties of \(\text{ xK }_2\text{ O-(25--x)Na }_2\text{ O-12.5MgO-12.5BaO-50B }_2\text{ O }_3\) glasses. J. Taibah Univ. Sci. 10, 442–449 (2016)Google Scholar
  23. 23.
    M.N. Azlan, M.K. Halimah, S.Z. Shafinas, W.M. Daud, Polarizability and optical basicity of \(\text{ Er }^{3+}\) ions doped tellurite based glasses. Chalcogenide Lett. 11, 319–335 (2014)Google Scholar
  24. 24.
    H.K. Obayes, H. Wagiran, R. Hussin, M.A. Saeed, A new strontium/copper co-doped lithium borate glass composition with modified dosimetric features. J. Lumin. 17, 202–211 (2016)CrossRefGoogle Scholar
  25. 25.
    R. Chen, Glow curve with general order kinetics. J. Electrochem. Soc. 116(9), 1254–1257 (1969)CrossRefGoogle Scholar
  26. 26.
    R. Chen, S.A.A. Winer, Effects of various heating rates on glow curves. J. Appl. Phys. 41(13), 5227–5232 (1970)ADSCrossRefGoogle Scholar
  27. 27.
    J.H. Hubbell, S.M. Seltzer, Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV–20 MeV for elements \(1\le {Z}\le 92\) and 48 additional substances of dosimetric interest, National Institute of Standards and Physics Laboratory, NISTIR (1995), p 5632Google Scholar
  28. 28.
    K. Singh, L. Gerward, Summary of existing information on gamma-ray and X-ray attenuation coefficients of solutions. Indian J. Pure Appl. Phy. (IJPAP) 40, 643–649 (2002)Google Scholar
  29. 29.
    S.R. Manohara, S.M. Hanagodimath, L. Gerward, Energy dependence of effective atomic numbers for photon energy absorption and photon interaction: studies of some biological molecules in the energy range 1 keV- 20 MeV. Med. Phys. 35, 388–402 (2008)CrossRefGoogle Scholar
  30. 30.
    B.E. Warren, X-ray diffraction study of the structure of glass. Chem. Rev. 26(2), 237–255 (1940)CrossRefGoogle Scholar
  31. 31.
    H.K. Obayes, H. Wagiran, R. Hussin, M.A. Saeed, Strontium ions concentration dependent modifications on structural and optical features of \(\text{ Li }_4\text{ Sr }(\text{ BO }_3)_3\) glass. J. Mol. Struct. 1111, 132–141 (2016)Google Scholar
  32. 32.
    D. Kumar, S.M. Rao, S.P. Singh, Structural, optical and thermoluminescence study of \(\text{ Dy }^{3+}\) ion doped sodium strontium borate glass. J. Non Cryst. Solids 464, 51–55 (2017)Google Scholar
  33. 33.
    A. Monshi, M.R. Foroughi, M.R. Monshi, Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154–160 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    S.I. Henderson, T.C. Mortensen, S.M. Underwood, W. van Megen, Effect of particle size distribution on crystallisation and the glass transition of hard sphere colloids. Phys. A 233, 102–116 (1996)CrossRefGoogle Scholar
  35. 35.
    S. Rada, A. Dehelean, E. Culea, FTIR and UV-VIS spectroscopy investigations on the structure of the europium-lead-tellurate glasses. J. Non Cryst. Solids 357(16–17), 3070–3073 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    S.A. Azizan, S. Hashim, N.A. Razak, M.H.A. Mhared, Y.S.M. Alajerami, N. Tamchek, Physical and optical properties of \(\text{ Dy }^{3+}: \text{ Li }_2\text{ O-K }_2\text{ O-B }_2\text{ O }_3\) glasses. J. Mol. Struct. 1076, 20–25 (2014)Google Scholar
  37. 37.
    R. Laopaiboon, T. Thumsa-ard, C. Bootjomchai, The thermoluminescence properties and determination of trapping parameters of soda lime glass doped with erbium oxide. J. Lumin. 197, 304–309 (2018)CrossRefGoogle Scholar
  38. 38.
    C. Gautam, A.K. Yadav, A.K. Singh, A review on infrared spectroscopy of borate glasses with effects of different Additives International Scholarly Research Network, ISRN Ceramics (2012), p. 428497Google Scholar
  39. 39.
    A. Noorazlan, H.M. Kamari, S.S. Zulkefly, D.W. Mohamad, Effect of erbium nanoparticles on optical properties of zinc borotellurite glass system. J. Nanomater. 2013, 940917 (2013)Google Scholar
  40. 40.
    Y.B. Saddeek, K.A. Aly, S.A. Bashier, Optical study of lead borosilicate glasses. Phys. B 405, 2407–2412 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    M.J. Genge, A.P. Jones, G.D. Price, An infrared and raman study of carbonate glasses: Implications for the structure of carbonatite magmas. Geochim. et Cosmochim. Acta 59(5), 927–937 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    S. Dalal, S. Khasa, M.S. Dahiya, A. Yadav, A. Agarwal, S. Dahiya, Optical and thermal investigations on vanadyl doped zinc lithium borate glasses. J. Asian Ceram. Soc. 3, 234–239 (2015)CrossRefGoogle Scholar
  43. 43.
    F. Ahmadi, R. Hussin, S.K. Ghoshal, Spectral characteristics of \(\text{ Er }^{3+}\) doped magnesium zinc sulfophosphate glasses. J. Alloys Compd. 711, 94–102 (2017)Google Scholar
  44. 44.
    I. Arul Rayappan, K. Marimuthu, Luminescence spectra and structure of Er3+ doped alkali borate and fluoroborate glasses. J. Phys. Chem. Solids 74, 1570–1577 (2013)Google Scholar
  45. 45.
    C.K. Jrgensen, B.R. Judd, Hypersensitive pseudoquadrupole transitions in lanthanides. Mol. Phys. 8, 281–290 (1964)ADSCrossRefGoogle Scholar
  46. 46.
    A. Saidu, H. Wagiran, M.A. Saeed, H.K. Obayes, A. Bala, F. Usman, Thermoluminescence response of rare earth activated zinc lithium borate glass. Radiat. Phys. Chem. 144, 413–418 (2018)ADSCrossRefGoogle Scholar
  47. 47.
    S.K. Sharma, S.S. Pitale, M.M. Malik, R.N. Dubey, M.N. Qureshi, Synthesis and detailed kinetic analysis using computerized glow-curve deconvolution technique of nanocrystalline \(\text{ Sr }_3\text{ Al }_2\text{ O }_6:\text{ Pr }^{3+}\)—a new phosphor for UV applications. Phys. Status Solidi A 205, 2695–2703 (2008)Google Scholar
  48. 48.
    W.M. Pontuschka, L.S. Kanashiro, L.C. Courrol, Luminescence mechanisms for borate glasses: The role of local structural units. Glass Phys. Chem. 27, 37–47 (2001)CrossRefGoogle Scholar
  49. 49.
    T.K. Kumar, K.V. Reddy, Effective atomic number of materials for dosimetric interest. Radiat. Phys. Chem. 50(6), 545–553 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsPunjabi UniversityPatialaIndia
  2. 2.Institute of Physics, Academia SinicaTaipeiTaiwan

Personalised recommendations