Applied Physics A

, 125:21 | Cite as

AC susceptibility and electrical properties of rare-earth- and alkali metal-substituted (Tl0.7M0.3)Sr2CaCu2O7 with M = Er, Gd, La, Na, K and Rb

  • Ilhamsyah Putra Abu Bakar
  • K. Muhammad-Aizat
  • J. Nur-Akasyah
  • M. S. Mohd-Syahmi
  • Nurul Raihan Mohd Suib
  • W. S. Chiu
  • R. Abd-ShukorEmail author


The effects of rare-earth elements M = Er, Gd and La, and alkali metals M = Na, K and Rb substitution on (Tl0.7M0.3)Sr2CaCu2O7 (Tl-1212) are reported. The rare-earth elements were chosen by considering the ionic radius, i.e., from the smallest (Er+3) to the largest (La+3) ion. The samples were prepared via the solid-state reaction method. X-ray diffraction patterns showed the presence of major Tl-1212 and minor Tl-1201 and Ca0.3Sr0.7CuO2 phase in almost all samples. The resistance versus temperature curves for the rare-earth-substituted samples showed onset temperature between 87 and 90 K and zero resistance temperature between 69 and 81 K. Alkali metal substitutions exhibited Tl-1212 phase but showed no superconducting transition although the electrical resistivity was much lower than the rare-earth-substituted samples. AC susceptibility measurement showed superconducting transition T, between 59 and 80 K for the rare-earth element-substituted samples. The average grain size, the transition temperature, T and the peak temperature Tp of the imaginary part of the susceptibility χ″ decreased as the ionic radius of the rare earths was reduced.



This research was supported by the Ministry of Higher Education of Malaysia under grant no. FRGS/1/2017/STG02/UKM/01/1.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest regarding this paper.


  1. 1.
    R.M. Hazen, L.W. Finger, R.J. Angel, C.T. Prewitt, N.L. Ross, C.G. Hadidiacos, P.J. Heaney, D.R. Veblen, Z.Z. Sheng, A. El Ali, A.M. Hermann, Phys. Rev. Lett. 60, 1657 (1988)CrossRefADSGoogle Scholar
  2. 2.
    S.S.P. Parkin, V.Y. Lee, A.I. Nazzal, R. Savoy, R. Beyers, S.J. La Placa, Phys. Rev. Lett. 61, 750 (1988)CrossRefADSGoogle Scholar
  3. 3.
    Z.Z. Sheng, A.M. Hermann, Ten Years of Superconductivity: 1980–1990 Springer, Dordrecht, 1993, pp. 305–308CrossRefGoogle Scholar
  4. 4.
    Z.Z. Sheng, A.M. Hermann, D.C. Vier, S. Schultz, S.B. Oseroff, D.J. George, R.M. Hazen, Phys. Rev. B. 38, 7074 (1988)CrossRefADSGoogle Scholar
  5. 5.
    S. Nakajima, M. Kikuchi, Y. Syono, N. Kobayashi, Y. Muto, Phys. C. 168, 57 (1990)CrossRefADSGoogle Scholar
  6. 6.
    N.A. Hamid, B. Musa, A.K. Yahya, M.H. Jumali, R. Abd-Shukor, Ceram. Int. 30, 1585 (2004)CrossRefGoogle Scholar
  7. 7.
    Y.F. Li, O. Chmaissem, Z.Z. Sheng, Phys. C. 248, 42 (1995)CrossRefADSGoogle Scholar
  8. 8.
    R. Abd-Shukor, K.S. Tee, J. Mater. Sci. Lett. 17(2), 103 (1997)CrossRefGoogle Scholar
  9. 9.
    Z.Y. Chen, Z.Z. Sheng, Y.Q. Tang, Y.F. Li, D.O. Pederson, Solid. State. Commun. 83, 895 (1992)CrossRefADSGoogle Scholar
  10. 10.
    D.A. Zając, W.M. Woch, J. Stępień, C. Kapusta, A. Kołodziejczyk, H. Sudra, G. Gritzner, Radiat. Phys. Chem. 93, 33 (2013)CrossRefADSGoogle Scholar
  11. 11.
    J.M. Liang, R.S. Liu, Y.T. Huang, S.F. Wu, P.T. Wu, L.J. Chen, Phys. C. 165, 347 (1990)CrossRefADSGoogle Scholar
  12. 12.
    M.R. Presland, J.L. Tallon, Phys. C. 177, 1 (1991)CrossRefADSGoogle Scholar
  13. 13.
    V. Badri, U.V. Varadaraju, Solid. State. Commun. 93, 1003 (1995)CrossRefADSGoogle Scholar
  14. 14.
    Y. Xin, Z.Z. Sheng, D.X. Gu, D.O. Pederson, Phys. C. 177, 183 (1991)CrossRefADSGoogle Scholar
  15. 15.
    Y. Xin, Y.F. Li, D. Ford, D.O. Pederson, Z.Z. Sheng, Jpn. J. Appl. Phys. 30(9A), L1549 (1991)CrossRefADSGoogle Scholar
  16. 16.
    A.I. Abou-Aly, N.H. Mohammed, R. Awad, I.H. Ibrahim, Supercond. Sci. Technol. 13, 1107 (2000)CrossRefADSGoogle Scholar
  17. 17.
    M.H. Eder, G. Gritzner, Supercond. Sci. Technol. 18, 87 (2005)CrossRefADSGoogle Scholar
  18. 18.
    K. Muhammad-Aizat, R. Abd-Shukor, Sains. Malays. 47(7), 1579 (2018)CrossRefGoogle Scholar
  19. 19.
    J. Nur-Akasyah, R. Abd-Shukor, J. Mat. Sci. Mater. Electron. 29, 3690 (2018)CrossRefGoogle Scholar
  20. 20.
    Y. Xin, Y.F. Li, D.X. Gu, D.O. Pederson, Z.Z. Sheng, Phys. C. 184, 185 (1991)CrossRefADSGoogle Scholar
  21. 21.
    B. Morosin, E.L. Venturini, R.G. Dunn, P. Newcomer Provencio, N. Missert, R.R. Padilla, Phys. C. 302, 119 (1998)CrossRefADSGoogle Scholar
  22. 22.
    T.-M. Chen, J.S. Ho, Phys. C. 282–287, 915 (1997)CrossRefADSGoogle Scholar
  23. 23.
    T.S. Kayed, H. Özkan, N.M. Gasanly, Supercond. Sci. Technol. 14, 738 (2001)CrossRefADSGoogle Scholar
  24. 24.
    C.P. Bean, Rev. Mod. Phys. 36, 31 (1964)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ilhamsyah Putra Abu Bakar
    • 1
  • K. Muhammad-Aizat
    • 1
  • J. Nur-Akasyah
    • 1
  • M. S. Mohd-Syahmi
    • 1
  • Nurul Raihan Mohd Suib
    • 1
    • 2
  • W. S. Chiu
    • 3
  • R. Abd-Shukor
    • 1
    Email author
  1. 1.School of Applied PhysicsUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Faculty of Applied SciencesUniversiti Teknologi MARAShah AlamMalaysia
  3. 3.Low Dimensional Materials Research Centre, Department of Physics, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations