Advertisement

Applied Physics A

, 125:11 | Cite as

Color-tunable and upconversion luminescence of Gd2O2S:Er,Tm phosphor: experimental investigations and first-principles calculation

  • Peipei Liu
  • Fei Wang
  • Bin Yang
  • Xiumin Chen
Article
  • 6 Downloads

Abstract

The Er3+, Tm3+ co-doped gadolinium oxysulfide phosphors were prepared using solid-state reaction in vacuum. The crystal structure, morphology, and photoluminescence characteristics were, respectively, investigated by X-ray diffraction, transmission electron microscope, upconversion luminescence spectra and Commission Internationale de L’Eclairage diagram. Under 980 nm excitation, the quenching concentration of Er3+ was revealed to be 7 mol% with highest luminescence intensity and fluorescence lifetime. The emitting color of Gd2O2S:Er,Tm phosphors can be tuned by adjusting the concentration of Er3+ and Tm3+. First-principles calculation was employed to clarify the luminescence mechanism of the impurities doped in gadolinium oxysulfide host lattice by calculated band structure, density of states and absorption spectrum.

Notes

Acknowledgements

The work is financially supported by National Natural Science Foundation of China (NSFC) under Grant No. 51504120 and NSFC-FWO exchange project (Grant No. 5171101430).

References

  1. 1.
    J. Wang, Z.J. Zhang, Luminescence properties and energy transfer studies of color tunable Tb3+ -doped RE1/3Zr2(PO4)3 (RE = Y, La, Gd and Lu). J. Alloys Compd. 685, 841–847 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Shang, D. Geng, D. Yang, X. Kang, Y. Zhang, J. Lin, Luminescence and energy transfer properties of Ca2Ba3(PO4)3Cl and Ca2Ba3(PO4)3Cl:A (A = Eu2+/Ce3+/Dy3+/Tb3+) under UV and low-voltage electron beam excitation. Inorg. Chem. 52, 3102–3112 (2013)CrossRefGoogle Scholar
  3. 3.
    D. Qin, W. Tang, Crystal structure, tunable luminescence and energy transfer properties of Na3La(PO4)2:Tb3+,Eu3+ phosphors. RSC Adv. 7, 2494–2502 (2017)CrossRefGoogle Scholar
  4. 4.
    D.Q. Chen, Z.Y. Wan, Y. Zhou, Y. Chen, H. Yu, H.W. Lu, Z.G. Ji, P. Huang. Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: phase-separation-controlled crystallization and optical property. J. Alloys Compd. 625, 149–157 (2015)CrossRefGoogle Scholar
  5. 5.
    G.G. Li, C.X. Li, C.M. Zhang, Z.W. Quan, C. Peng, J. Lin, Tm and/or Dy doped LaOCl nanocrystalline phosphors for field emission displays. J. Mater. Chem. 19, 8936–8943 (2009)CrossRefGoogle Scholar
  6. 6.
    G.A. Kumar, M. Pokhrel, A. Martinez, D.K. Sardar. Synthesis and upconversion Spectroscopy of Yb Er doped M2O2S (M = La, Gd, Y) phosphors. Sci. Adv. Mater. 4, 623–630 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, Y. Huang, Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE = Tb, Yb, Er, Tm, and Ho). J. Solid State Chem. 184, 2178–2183 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015)CrossRefGoogle Scholar
  9. 9.
    D. Yin, Y. Qi, S. Peng, S. Zheng, F. Chen, G. Yang, X. Wang, Y. Zhou, Er3+/Tm3+ codoped tellurite glass for blue upconversion-structure, thermal stability and spectroscopic properties. J. Lumin. 146, 141–149 (2014)CrossRefGoogle Scholar
  10. 10.
    G.A. Kumar, M. Pokhrel, D.K. Sardar, Intense visible and near infrared upconversion in M2O2S: Er (M = Y, Gd, La) phosphor under 1550 nm excitation. Mater. Lett. 68, 395–398 (2012)CrossRefGoogle Scholar
  11. 11.
    B. Dong, X.S. Xu, X.J. Wang, T. Yang, Y.Y. He, Infrared-to-visible up-conversion emissions and thermometric applications of Er3+-oped Al2O3. Appl. Phys. B 89, 281–284 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    T. Aisaka, M. Fujii, S. Hayashi, Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films. Appl. Phys. Lett. 13205, 1–3 (2008)Google Scholar
  13. 13.
    T.T. Zhu, G.W. Tang, X.D. Chen, M. Sun, Q. Qian, Z.M. Yanng, Enhanced 1.8 µm emission in Er3+/Tm3+ co-doped lead silicate glasses under different excitations for near infrared laser. J. Rare Earth 34, 978–985 (2016)CrossRefGoogle Scholar
  14. 14.
    X. Xu, Y. Zhou, S. Zheng, D. Yin, X. Wang, Luminescence properties and energy transfer mechanism of Er3+/Tm3+, co-doped tellurite glasses. J. Alloys Compd. 556, 221–227 (2013)CrossRefGoogle Scholar
  15. 15.
    V.A.G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, E. M. Jr. Expanding broadband emission in the near-IR via energy transfer between Er3+–Tm3+, co-doped tellurite-glasses. J Lumin 145, 787–792 (2014)CrossRefGoogle Scholar
  16. 16.
    Y. Tian, R. Xu, L. Hu, J. Zhang. 2.7 µm fluorescence radiative dynamics and energy transfer between Er3+, and Tm3+, ions in fluoride glass under 800 nm and 980 nm excitation. J. Quant. Spectrosc. Radiat. 113, 87–95 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    C.M. Trindade, R.T. Alves, F.D.A.M.G. Rego-Filho, A.S. Gouveia-Neto. White light generation via sequential stepwise absorption and energy-transfer frequency upconversion in Tm3+/Er3+ -codoped glass. J. Solid State Chem. 255, 13–16 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    W.B. Sun, Z.B. Zhang, H.X. Sun, W.H. Wong, D.Y. Yu, E.Y.B. Pun, D.L. Zhang. Crystalline phase, profile characteristics and spectroscopic properties of Er3+/Tm3+ -diffusion-codoped LiNbO3 crystal. J. Lumin. 184, 191–198 (2017)CrossRefGoogle Scholar
  19. 19.
    W. Sun, K. Zhu, H. Xu, X.J. Yang, M.X. Yu, X.B. Li, L.X. Wang, Q.T. Zhang, Enhanced absorbing property of Sm2O2S laser absorbent by doping Er3+/Tm3+. J. Mater. Sci. Mater. Electron. 28, 697–701 (2017)CrossRefGoogle Scholar
  20. 20.
    L.E. Sobon, K.A. Wickersheim, R.A. Buchanan et al., Growth and properties of lanthanum oxysulfide crystals. J. Appl. Phys. 42, 3049–3053 (1971)ADSCrossRefGoogle Scholar
  21. 21.
    M. Leskelä, L. Niinistö, Thermal decomposition of rare earth oxysulfides in air. J. Therm. Anal. 18, 307–314 (1980)CrossRefGoogle Scholar
  22. 22.
    R. Gao, Y. Li, Theoretical study on the electronic structure, mechanical property, and thermal expansion of yttrium oxysulfide. Int. J. Mater. Sci. Eng. 04, 1550004 (2015)Google Scholar
  23. 23.
    J. liu, H.D. Luo, P.J. Liu, L.X. Han, X. Zheng, B. Xu, X. B. Yu. One-pot solvothermal synthesis of uniform layer-by-layer self-assembled ultrathin hexagonal Gd2O2S nanoplates and luminescent properties from single doped Eu3+ and codoped Er3+,Yb3+. Dalton Trans. 41, 13984–13988 (2012)CrossRefGoogle Scholar
  24. 24.
    X. Yan, G.R. Fern, R. Withnall, J. Silver, Effects of the host lattice and doping concentration on the colour of Tb3+ cation emission in Y2O2S:Tb3+ and Gd2O2S:Tb3+ nanometer sized phosphor particles. J. Nanoscale 5, 8640–8646 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    M. Mikami, S. Nakamura, Electronic structure of rare-earth sesquioxides and oxysulfides. J. Alloys Compd. 37, 687–692 (2006)CrossRefGoogle Scholar
  26. 26.
    J. Lian, H. Qin, P. Liang, B. Wang, F. Liu, Controllable synthesis and photoluminescence properties of Gd2O2S:x%Pr3+ miscrospheres using an urea-ammonium sulfate(UAS) system. Ceram. Int. 41, 2990–2998 (2015)CrossRefGoogle Scholar
  27. 27.
    Z.G. Liu, X.D. Sun, S.K. Xu et al., Tb3+- and Eu3+-doped lanthanum oxysulfide nanocrystals. Gelatin-templated synthesis and luminescence properties. J. Phys. Chem. C 112, 2353–2358 (2008)CrossRefGoogle Scholar
  28. 28.
    Z.L. Fu, Y. Geng, H.W. Chen et al., Combustion synthesis and luminescent properties of the Eu3+-doped yttrium oxysulfide nanocrystalline. Opt. Mater. 31, 58–62 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    P. Dorenbos, ChemInform abstract: lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena. J. Alloys Compd. 488, 113–119 (2009)CrossRefGoogle Scholar
  30. 30.
    Y. Song, Y. Huang, L. Zhang, Y.H. Zheng, N. Guo, H.P. You, Gd2O2S:Yb,Er submicrospheres with multicolor upconversion fluorescence. RSC Adv. 2, 4777–4781 (2012)CrossRefGoogle Scholar
  31. 31.
    S.P. Wang, O. Laudi, H. Lucks, K.A. Wickersheim. X-ray image intensifier tubes using rare earth oxysulfide phosphors. Nucl. Sci. IEEE Trans. 17, 49–56 (1970)ADSCrossRefGoogle Scholar
  32. 32.
    A. Guan, L. Zhou, G. Wang, F.F. Gao, Q.P. Wang, X.T. Chen, Y.H. Li. Photoluminescence characterization and energy transfer of color-tunable Li6Y(BO3)3:Ce3+,Tb3+, phosphors. Phys. B Condens. Matter. 494, 75–81 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    D. Li, Q. Ma, X. Xi, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu. Dy3+ and Eu3+ Co-doped NaGdF4, nanofibers endowed with bifunctionality of tunable multicolor luminescence and paramagnetic properties. Chem. Eng. J. 309, 230–239 (2017)CrossRefGoogle Scholar
  34. 34.
    V.L. Colvin, M.C. Schlamp, A.P. Alivisatos. Light emitting diodes made with cadmium selenide nanocrystals. SPIE 281, 2535–2547 (1994)Google Scholar
  35. 35.
    C. Charlton, A. Katzir, B. Mizaikoff, Infrared evanescent field sensing with quantum cascade lasers and planar silver halide waveguides. Anal. Chem. 77, 4398–4403 (2005)CrossRefGoogle Scholar
  36. 36.
    K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Koike, Y. Okamoto, High-efficiency organic dye-doped polymer optical fiber lasers. Appl. Phys. Lett. 77, 331–333 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    S.L. Yuan, L.T. Wang, Y.X. Yang, F. Chevire, F. Tessier, G.R. Chen. Novel color-tunable Gd2O2 CN2:Tb3+, Eu3+, phosphors: characterization and photoluminescence properties. Ceram. Int. 42, 12508–12511 (2016)CrossRefGoogle Scholar
  38. 38.
    M. Li, Z. Xia, Z. Wang, Color-tunable emission and energy transfer studies in GdOBr:Ce3+, Dy3+ phosphor. Opt. Mater. 37, 446–450 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Song, Y. Huang, L. Zhang, Y. Zheng, G. Ning, H. You, Gd2O2S:Yb,Er submicrospheres with multicolor upconversion fluorescence. RSC Adv 2, 4777–4781 (2012)CrossRefGoogle Scholar
  40. 40.
    W. Yan, S. Zhou, Q. Xie, C. Zhang, Z. Zhang, First principle investigation of CrSi2 with doping V. IEEE 4, 1747–1749 (2011)Google Scholar
  41. 41.
    C. Pédrini, Electronic processes in rare earth activated wide gap materials. Phys. Stat. Sol. 202, 185–194 (2005)ADSGoogle Scholar
  42. 42.
    T.A. Wesolowski, A. Warshel, Frozen density-functional approach for ab-initio calculations of solvated molecules. J. Phys. Chem. 97, 8050–8053 (1993)CrossRefGoogle Scholar
  43. 43.
    D.E. Favley, C.J. Cramer. Aryl- and alkylnitrenium ions: singlet-triplet gaps via AB initio and semi-empirical methods. Tetrahedron Lett. 33, 1705–1708 (1992)CrossRefGoogle Scholar
  44. 44.
    V.I. Anisimov, First-principles calculations of the electronic structure and spectra of strongly correlated systems: LDA + U method. J. Phys. Condens. Matter 9, 7359–7367 (1995)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Li, Y. Li, R. Wang, Y. Xu, W. Zheng, Z. Liu, First-Principles calculation of phase/size characteristic in Yb3+/Tm3+/ZnO upconversion nanoparticles through metal Ga3+ doping. Chem. Sel. 2, 4433–4438 (2017)Google Scholar
  46. 46.
    J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    G. Zhang, Z. Luo, H. Zhang, R. Chu, Ignition-proof mechanism of magnesium alloy added with rare earth La from first-principle study. J. Rare Earth 30, 573–578 (2012)CrossRefGoogle Scholar
  48. 48.
    J.D. Head, M.C. Zerner, A Broyden–Fletcher–Goldfarb–Shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 122, 264–270 (1985)ADSCrossRefGoogle Scholar
  49. 49.
    L. Gao, J. Zhou, Z.M. Sun, R.S. Chen, E.H. Han, First-principles calculations of the β′-Mg 7 Gd precipitate in Mg-Gd binary alloys. Chin. Sci. Bull. 56, 1142–1146 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Engineering Laboratory for Vacuum MetallurgyKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, Key Laboratory of Vacuum Metallurgy of Non-ferrous Metals of Yunnan ProvinceKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations