Applied Physics A

, 125:33 | Cite as

Strain-modulated mechanical, electronic, and thermal transport properties of two-dimensional PdS2 from first-principles investigations

  • Yang-Shun Lan
  • Qing Lu
  • Cui-E HuEmail author
  • Xiang-Rong ChenEmail author
  • Qi-Feng Chen


Strains can effectively modulate the electronic structure and thermal conductivity of materials. In this work, the electronic structure and thermal conductivity properties of PdS2 under different strains were investigated using first-principles calculation combined with iterative method for solving Boltzmann transport equation theory. Through phonon spectrum calculations, it is found that PdS2 is thermodynamically stable in the strain range from 0 to 10%. Interestingly, the strained single-layer PdS2 transforms from an indirect bandgap semiconductor to a quasi-direct bandgap semiconductor, and the bandgap of PdS2 decreases to 1.41 eV (decreased by 20.8%). Due to the softening of the phonons and the decreasing of phonons group velocity, the thermal conductivity is reduced with the applied biaxial area strains. Thermal transport investigations reveal that the in-plane thermal conductivity of unstrained PdS2 is 32.32 Wm− 1 K− 1. When the area strain reaches 10%, the thermal conductivity of PdS2 is reduced by nearly twice the ratio of strain. The sensitive strain dependence of bandgap and thermal conductivity indicates that PdS2 can flexibly select the substrate and match the substrate, and the thermoelectric coefficient can be effectively adjusted, indicating that PdS2 has good application prospects in thermoelectric, photoelectric, and catalytic materials.



The authors would like to thank the support by the NSAF Joint Fund Jointly setup by the National Natural Science Foundation of China and the Chinese Academy of Engineering Physics under Grant No. U1830101, the Science Challenge Project under Grant No. TZ2016001, and the National Natural Science Foundation of China under Grant No. 11504035.


  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    M.I. Katsnelson, Mater. Today 10, 20 (2007)CrossRefGoogle Scholar
  5. 5.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    T. Heine, Acc. Chem. Res. 48, 65 (2015)CrossRefGoogle Scholar
  7. 7.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    H.S. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N. Rao, Angew. Chem. Int. Ed. 49, 4059 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, ACS Nano 8, 4033 (2014)CrossRefGoogle Scholar
  10. 10.
    P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    N.D. Drummond, V. Zólyomi, V.I. Fal’ko, Phys. Rev. B 85, 07423 (2012)CrossRefGoogle Scholar
  12. 12.
    C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Adv. Mater. 21, 2889 (2009)CrossRefGoogle Scholar
  13. 13.
    J.H. Warner, M.H. Rummeli, A. Bachmatiuk, B. Buchner, ACS Nano 4, 1299 (2010)CrossRefGoogle Scholar
  14. 14.
    A. Nag, K. Raidongia, K.P. Hembram, R. Datta, U.V. Waghmare, C.N. Rao, ACS Nano 4, 1539 (2010)CrossRefGoogle Scholar
  15. 15.
    Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z.Y. Ong, T. Xu, R. Xin, L. Pan, B. Wang, L. Sun, J. Wang, G. Zhang, Y.W. Zhang, Y. Shi, X. Wang, Nat. Commun. 5, 5290 (2014)CrossRefGoogle Scholar
  16. 16.
    K.D. Park, O. Khatib, V. Kravtsov, G. Clark, X. Xu, M.B. Raschke, Nano Lett. 16, 2621 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    A. Surrente, D. Dumcenco, Z. Yang, A. Kuc, Y. Jing, T. Heine, Y.C. Kung, D.K. Maude, A. Kis, P. Plochocka, Nano Lett. 17, 4130 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    L. Li, Y. Zhang, Nano Res. 10, 2527 (2017)CrossRefGoogle Scholar
  19. 19.
    C. Cheng, J.T. Sun, X.R. Chen, H.X. Fu, S. Meng, Nanoscale 8, 17854 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5, 263 (2013)CrossRefGoogle Scholar
  21. 21.
    D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, ACS Nano 8, 1102 (2014)CrossRefGoogle Scholar
  22. 22.
    F. Gronvold, H. Haraldsen, A. Kjekshus, Acta Chem. Scand. 14, 1879 (1960)CrossRefGoogle Scholar
  23. 23.
    P. Miro, M. Ghorbani-Asl, T. Heine, Angew. Chem. Int. Ed. 53, 3015 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, Y. Li, Z. Chen, J. Mater. Chem. C 3, 9603 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Ghorbani-Asl, A. Kuc, P. Miro, T. Heine, Adv. Mater. 28, 853 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Gan, R. Quhe, L. Wu, S. Hou, J. Bi, G. Liu, P. Lu, J. Magn. Magn. Mater. 458, 310 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    D. Saraf, S. Chakraborty, A. Kshirsagar, R. Ahuja, Nano Energy 49, 283 (2018)CrossRefGoogle Scholar
  28. 28.
    H. Xie, T. Ouyang, É Germaneau, G. Qin, M. Hu, H. Bao, Phys. Rev. B 93, 075404 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Han, G. Qin, C. Jungemann, M. Hu, Nanotechnology 27, 265706 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    L. Zhu, T. Zhang, Z. Sun, J. Li, G. Chen, S.A. Yang, Nanotechnology 26, 465707 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, ACS Nano 2, 2301 (2008)CrossRefGoogle Scholar
  32. 32.
    T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Phys. Rev. B 79, 205433 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    A. Togo, F. Oba, I. Tanaka, Phys. Rev. B 78, 134106 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    W. Li, J. Carrete, N.A. Katcho, N. Mingo, Computer Phys. Commun. 185, 1747 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    S. Ahmad, Mater. Chem. and Phys. 198, 162 (2017)CrossRefGoogle Scholar
  41. 41.
    F. Mouhat, F.X. Coudert, Phys. Rev. B 90, 224104 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    R.C. Andrew, R.E. Mapasha, A.M. Ukpong, N. Chetty, Phys. Rev. B 85, 125428 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    H. Peelaers, C.G. Van de Walle, J. Phys. Chem. C 118, 12073 (2014)CrossRefGoogle Scholar
  44. 44.
    R.E. Cohen, O. Gulseren, R.J. Hemley, Am. Miner. 85, 338 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    A. Larmagnac, S. Eggenberger, H. Janossy, J. Voros, Sci. Rep. 4, 7254 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    G.B. Liu, D. Xiao, Y. Yao, X. Xu, W. Yao, Chem. Soc. Rev. 44, 2643 (2015)CrossRefGoogle Scholar
  47. 47.
    L. Fu, Y. Wan, N. Tang, Y.M. Ding, J. Gao, J. Yu, H. Guan, K. Zhang, W. Wang, C. Zhang, J.J. Shi, X. Wu, S.F. Shi, W. Ge, L. Dai, B. Shen, Sci. Adv. 3, e1700162 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    C. He, C. Zhang, J. Li, X. Peng, L. Meng, C. Tang, J. Zhong, Phys. Chem. Chem. Phy. 18, 9682 (2016)CrossRefGoogle Scholar
  50. 50.
    S. Froyen, D.M. Wood, A. Zunger, Phys. Rev. B 36, 4547 (1987)ADSCrossRefGoogle Scholar
  51. 51.
    H. Zabel, J. Phys. Condens. Mat. 13, 7679 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    Y.-Y. Qi, T. Zhang, Y. Cheng, X.-R. Chen, D.-Q. Wei, L.-C. Cai, J. Appl. Phys. 119, 095103 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J. McGaughey, J.A. Malen, Nat. Commun. 4, 1640 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    Y. Zhou, Y. Cheng, X.-R. Chen, C.-E. Hu, Q.-F. Chen, Philos. Mag. 98, 1900 (2018)ADSCrossRefGoogle Scholar
  56. 56.
    A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2(5), 466 (2009)CrossRefGoogle Scholar
  57. 57.
    Y. Han, J.Y. Yang, M. Hu, Nanoscale 10(11), 5229–5238 (2018)CrossRefGoogle Scholar
  58. 58.
    Y. Kuang, L. Lindsay, S. Shi, X. Wang, B. Huang, Int. J. Heat Mass Transf. 101, 772 (2016)CrossRefGoogle Scholar
  59. 59.
    D. Qin, X.-J. Ge, G. Ding, G. Gao, J.-T. Lü, RSC Adv. 7, 47243 (2017)CrossRefGoogle Scholar
  60. 60.
    G. Li, K. Yao, G. Gao, Nanotechnology 29, 015204 (2018)ADSCrossRefGoogle Scholar
  61. 61.
    H.Y. Lv, W.J. Lu, D.F. Shao, H.Y. Lu, Y.P. Sun, J. Mater. Chem. C 4, 4538 (2016)CrossRefGoogle Scholar
  62. 62.
    S.-D. Guo, J. Mater. Chem. C 4, 9366 (2016)CrossRefGoogle Scholar
  63. 63.
    G. Qin, Q.-B. Yan, Z. Qin, S.-Y. Yue, M. Hu, G. Su, Phys. Chem. Chem. Phy. 17, 4854 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina
  2. 2.College of Physics and Electronic EngineeringChongqing Normal UniversityChongqingChina
  3. 3.National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid PhysicsChinese Academy of Engineering PhysicsMianyangChina

Personalised recommendations