Applied Physics A

, 125:15 | Cite as

A broadband plasmonic light absorber based on a tungsten meander-ring-resonator in visible region

  • Can Cao
  • Yongzhi ChengEmail author
Rapid communication


We present the design and numerical simulations of a broadband plasmonic light absorber (PLA) based on a tungsten meander-ring-resonator (MRR) structure in visible region. The proposed PLA is composed of a periodic MRR array and a continuous tungsten (W) film separated by a dielectric substrate. Simulation results indicate that the absorbance of our PLA is up to 99.9% at 538 THz, and it is over 90% from 370 to 854 THz across the whole visible region. The simulated electric field distributions reveal that the stronger broadband absorption is caused by the excitation of localized surface plasmon (LSP), propagating surface plasmon (PSP) and guide mode resonances. Further simulation indicates that designed PLA is polarization insensitive and has a wide angle for both transverse electric (TE) and transverse magnetic (TM) modes. In addition, the impact of the geometric parameters of the designed PLA on the absorption spectrum was also studied systematically. Owing to its superior performance, the proposed PLA based on tungsten MRR can be a potential application in thermal imaging, emissivity control and solar energy harvesting.



This work was supported by the National Natural Science Foundation of China (Grant nos. 61504171, 61605147), the Natural Science Foundation of Hubei China (Grant no. 2017CFB588), and the Science and Technology Research Project of Education Department of Hubei China (Grant no. D20181107).


  1. 1.
    T. Maier, H. Brückl, Wavelength-tunable microbolometers with metamaterial absorbers. Opt. Lett. 34(19), 3012–3014 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    F.B.P. Niesler, J.K. Gansel, S. Fischbach, M. Wegener, Metamaterial metal-based bolometers. Appl. Phys. Lett. 100(20), 203508 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Qu, Q. L i, K. D u, L. Ca i, J. Lu, M. Qiu, Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser Photonics Rev. 11(5), 1700091 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, M. Qiu, Thermal camouflage based on the phase changing material GST. Light Sci. Appl. 7, 26 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    N. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79, 125104 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, W. Yu, Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting. Adv. Opt. Mater. 1, 43–49 (2013)CrossRefGoogle Scholar
  8. 8.
    Y. Cheng, X.S. Mao, C. Wu, L. Wu, R.Z. Gong, Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing. Opt. Mater. 53, 195–200 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    J. Hao, J. Wang, X.L. Liu, W.J. Padilla, L. Zhou, M. Qiu, High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251103–251104 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    X. Chen, B. Jia, J.K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, M. Gu, Broadband enhancement in thin-fim amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Lett. 12, 2187–2192 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    S. Butun, K. Aydin, Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers. Opt. Express 22, 19457–19468 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    W. Li, U. Guler, N. Kinsey, G.V. Naik, A. Boltasseva, J. Guan, V.M. Shalaev, A.V. Kildishev, Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J.M. Pearce, D. Güney, Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Sci. Rep. 4(1), 4901 (2015)CrossRefGoogle Scholar
  14. 14.
    L. Zhou, Y. Zhou, Y.F. Zhu, X.X. Dong, B.L. Gao, Y.Z. Wang, S. Shen, Broadband bidirectional visible light absorber with wide angular tolerance. J. Mater. Chem. C. 4, 391 (2016)CrossRefGoogle Scholar
  15. 15.
    A.K. Azad, W.J.M. Kort-Kamp, M. Sykora, N.R. Weisse-Bernstein, T.S. Luk, A.J. Taylor, D.A.R. Dalvit, H.T. Chen, Metasurface broadband solar absorber. Sci. Rep. 6(1), 20347 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    H. Luo, Y.Z. Cheng, Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures. Mod. Phys. Lett. B 31, 1750231 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, H. Ye, Numerical study of an ultra-broadband near perfect solar absorber in the visible and near-infrared region. Opt. Lett. 42(3), 450–453 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    C. Cao, Y. Cheng, Quad-band plasmonic perfect absorber for visible light with a patchwork of silicon nanorod resonators. Materials 11(10), 1954 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Liu, G. Liu, Z. Huang, X. Liu, G. Fu, Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol. Energy Mater. Sol. Cell. 179, 346–352 (2018)CrossRefGoogle Scholar
  20. 20.
    J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, Z. An, Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies. Opt. Express 24(22), 25742–25751 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Cheng, H. Zhang, X.S. Mao, R.Z. Gong, Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application. Mater. Lett. 219, 123–126 (2018)CrossRefGoogle Scholar
  22. 22.
    Y.K.H. Cui, J. Fung, H. Xu, Y. Ma, S. Jin, He, N.X. Fang, Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 12, 1443–1447 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    J. Zhou, A.F. Kaplan, L. Chen, L.J. Guo, Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array. ACS Photonics 1(7), 618–624 (2014)CrossRefGoogle Scholar
  24. 24.
    S. He, F. Ding, L. Mo, F. Bao Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films. Progr. Electromagn. Res. 147, 69–79 (2014)CrossRefGoogle Scholar
  25. 25.
    H. Ko, D.H. Ko, Y. Cho, I.K. Han, Broadband light absorption using a multilayered gap surface plasmon resonator. Appl. Phys. A 116, 857–861 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    X. Yin, L. Chen, X. Li, Ultra-broadband super light absorber based on multi-sized tapered hyperbolic metamaterial waveguide arrays. J. Lightwave Technol. 33(17), 3704–3710 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    J. Wu, Polarization-independent broadband absorber based on pyramidal metal-dielectric grating structure. Opt. Mater. 62, 47–51 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    P. Liu, T. Lan, Wide-angle, polarization-insensitive, and broadband metamaterial absorber based on multilayered metal-dielectric structures. Appl Opt 56(14), 4201–4205 (2017)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    D. Wu, C. Liu, Y. Liu, Z. Xu, Z. Yu, L. Yu, L. Chen, R. Ma, J. Zhang, H. Ye, Numerical study of a wide-angle polarization independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion. RSC Adv. 8, 21054 (2018)CrossRefGoogle Scholar
  30. 30.
    Y. Lu, W. Dong, Z. Chen, Z. Wang, S.I. Bozhevolnyi, Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Sci. Rep. 6, 30650 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    D. Hu, H.Y. Wang, Q.F. Zhu, Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator. J. Nanophotonics 10(2), 026021 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, L. Chen, Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime. Opt. Express 25(14), 16715–16724 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    M. Zhong, S.J. Liu, B.L. Xu, J. Wang, H.Q. Huang, Single-band high absorption and coupling between localized surface plasmons modes in a metamaterials absorber. Opt. Mater. 72, 283–288 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, Q. Li, Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high- ε ″ metals. Appl. Phys. Lett. 110, 101101 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    M. Prasanta, C.N. Rao, Period- and cavity-depth-dependent plasmonic metamaterial perfect absorber at visible frequency: design rule. J. Nanophoton. 11(3), 036003 (2017)CrossRefGoogle Scholar
  36. 36.
    Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, X. Luo, A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum. Nanoscale 10, 8298–8303 (2018)CrossRefGoogle Scholar
  37. 37.
    L. Lei, S. Li, H. Huang, K. Tao, P. Xu, Ultra-broadband absorber from visible to near infrared using plasmonic metamaterial. Optic Express 26, 5686–5693 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    X. Chen, Y. Chen, M. Yan, M. Qiu, Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6, 2550–2557 (2012)CrossRefGoogle Scholar
  39. 39.
    C.J. Chen, J.S. Chen, Y.B. Chen, Optical responses from lossy metallic slit arrays under the excitation of a magnetic polariton. J. Opt. Soc. Am. B 28(8), 1798–1806 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Z. Li, L. Stan, A. David, X. Czaplewski, J. Yang, Gao, Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators. Opt. Express 26(5), 5616–5631 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    B. Wei, S. Jian, A near-infrared perfect absorber assisted by tungsten covered ridges. Plasmonics (2018). CrossRefGoogle Scholar
  42. 42.
    D. Govind, S.A. Ramakrishna, Multipolar localized resonances for multi-band metamaterial perfect absorbers. J. Opt. 16, 094016 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    J. Nath, S. Modak, I. Rezadad, D. Panjwani, F. Rezaie, J.W. Cleary, R.E. Peale, Far-infrared absorber based on standing-wave resonances in metal-dielectric-metal cavity. Opt. Express 23, 20366–20380 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Y.Z. Cheng, M.L. Huang, H.R. Chen, Z.Z. Guo, R.Z. Gong, X.S. Mao, Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves. Materials 10, 591 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    J.Y. Ou, E. Plum, J. Zhang, N.I. Zheludev, An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat. Nanotechnol 8(4), 252–255 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    P. Fei, Z. Shen, X. Wen, F. Nian, A single-layer circular polarizer based on hybrid meander-line and loop configuration. IEEE Trans. Antennas Propag. 63(10), 4609–4614 (2015)MathSciNetzbMATHADSCrossRefGoogle Scholar
  47. 47.
    Y.Z. Cheng, C. Fang, X.S. Mao, R.Z. Gong, L. Wu, Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency. IEEE Photonics J. 8(6), 1–9 (2016)CrossRefGoogle Scholar
  48. 48.
    M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander Jr., C.A. Ward, Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22, 1099–1120 (1983)ADSCrossRefGoogle Scholar
  49. 49.
    A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3), 131–314 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    B. Gangadhar, S.A. Ramakrishna, Tri-layered composite plasmonic structure with a nanohole array for multiband enhanced absorption at visible to NIR frequencies: plasmonic and metamaterial resonances. J. Phys. D: Appl. Phys. 49, 075103 (2016)CrossRefGoogle Scholar
  51. 51.
    C. Cao, Y.Z. Cheng, Quad-band plasmonic perfect absorber for visible light with a patchwork of silicon nanorod resonators. Materials 11(10), 1954 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and ElectronicsCentral South UniversityChangshaPeople’s Republic of China
  2. 2.School of Information Science and EngineeringWuhan University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations