Advertisement

Applied Physics A

, 125:6 | Cite as

Transition mixed-metal molybdates (MnMoO4) as an electrode for energy storage applications

  • B. Saravanakumar
  • S. P. Ramachandran
  • G. Ravi
  • V. Ganesh
  • A. Sakunthala
  • R. Yuvakkumar
Article
  • 28 Downloads

Abstract

MnMoO4 nanoparticles were synthesized by employing solvothermal method at optimized experimental condition to explore their electrochemical properties. The fundamental characterization studies such as X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectra confirmed the formation of pure phase of monoclinic crystal structure with C2/m space group. X-ray photoelectron spectroscopy studies revealed that the core-level Mn-2p spectrum peaks observed at 641.2 eV can be attributed to Mn-2p3/2 and that at 654.1 eV can be indexed to the binding energy of Mn-2p5/2. Major infrared peaks observed at 725, 800, 867, and 946 cm−1 could be designated to the characteristics bands of tetrahedral MoO4 groups in MnMoO4 nanoparticles. Raman peaks observed at 351, 823, 886, and 932 cm−1 corresponded to characteristics bands for MnMoO4 nanoparticles. The cyclic voltammetry studies at different scan rates (i.e., 10, 20, 30, 50, 80, and 100 mV s−1) were performed for all three MnMoO4 nanoparticles and displayed similar redox peaks in the positive and negative current regions, reflecting the pseudocapacitive nature. From galvanostatic charge–discharge profiles, it was found that MnMoO4 nanorods (R2) show high- capacitance of 697.4 F g−1 at 0.5 A g−1 current density and 40% increment in specific capacitance than other nanoparticles and can be considered as suitable nanomaterials as electrode for energy storage applications.

Notes

Acknowledgements

This work was supported by UGC Start-Up Research Grant no. F.30–326/2016 (BSR).

References

  1. 1.
    X. Yan, L. Tian, J. Murowchick, X. Chen, Partially amorphized MnMoO4 for highly efficient energy storage and the hydrogen evolution reaction. J. Mater. Chem. A 4, 3683–3688 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Mi, Z. Huang, Z. Zhou, F. Hu, Q. Meng, Room-temperature synthesis of MnMoO4·H2O nanorods by the micro emulsion-based method and its photocatalytic performance. J. Phys. Conf. Ser. 188, 188, 012056 (2009)CrossRefGoogle Scholar
  3. 3.
    D. Yi, F. Hui, Z. Fengjun, F. Youchun, Z. Qicai, Preparation of MnMoO4·XH2O (X = 0.9, 1.5) by a microemulsion method under different manganese precursors and analysis of their band-gap energy. Rare Metal Mater. Eng. 46, 68–72 (2017)Google Scholar
  4. 4.
    X. Mu, J. Du, Y. Zhang, Z. Liang, H. Wang, B. Huang, E. Xie, Construction of hierarchical CNT/RGO-supported MnMoO4nanosheets on ni foam for highperformance aqueous hybrid supercapacitors. ACS Appl. Mater. Interfaces 9, 35775–35784 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Yuan, W. Wang, J. Yang, H. Tang, Z. Ye, Y. Zeng, J. Lu, Three dimensional NiCo2O4@MnMoO4 core–shell nanoarrays for high-performance asymmetric supercapacitors. Langmuir 33, 10446–10454 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Yesuraj, V. Elumalai, M. Bhagavathiachari, A.S. Samuel, E. Elaiyappillai, P.M. Johnson, A facile sonochemical assisted synthesis of α-MnMoO4/PANI nanocomposite electrode for supercapacitor applications. J. Electroanal. Chem. 797, 78–88 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, B. Lin, Y. Sun, X. Zhang, H. Yang, J. Wang, Carbon nanotubes@metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage. RSC Adv. 5, 58100–58106 (2015)CrossRefGoogle Scholar
  8. 8.
    D.P. Dutta, A. Mathur, J. Ramkumar, A.K. Tyagi, Sorption of dyes and Cu(ii) ions from wastewater by sonochemically synthesized MnWO4 and MnMoO4 nanostructures. RSC Adv. 4, 37027–37035 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Kahari, J. Juuti, S. Myllymaki, H. Jantunen, Preparation of α-MnMoO4 at ultra-low temperature on an organic substrate. Mater. Res. Bull. 48, 2403–2405 (2013)CrossRefGoogle Scholar
  10. 10.
    C. Peng, L. Gao, S. Yang, J. Sun, A general precipitation strategy for large scale synthesis of molybdate nanostructures. Chem. Commun. 43, 5601–5603 (2008)CrossRefGoogle Scholar
  11. 11.
    Z. Gu, X. Zhang, NiCo2O4@MnMoO4 core–shell flowers for high performance supercapacitors. J. Mater. Chem. A 4, 8249–8254 (2016)CrossRefGoogle Scholar
  12. 12.
    B. Guan, W. Sun, Y. Wang, Carbon-coated MnMoO4 nanorod for high performance lithium-ion batteries. Electrochim. Acta 190, 354–359 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Cao, W. Li, K. Xu, Y. Zhang, T. Ji, R. Zou, J. Hu, MnMoO4·4H2O nanoplates grown on a Ni foam substrate for excellent electrochemical properties. J. Mater. Chem. A 2, 20723–20728 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Jang, T.J. Weakley, K.M. Doxsee, Aqueous crystallization of manganese (II) group 6 metal oxides. Chem. Mater. 13, 519–525 (2001)CrossRefGoogle Scholar
  15. 15.
    X. Xu, F. Xia, L. Zhang, J. Gao, Hydrothermal preparation of MnMoO4/reduced graphene oxide hybrid and its application in energy storage. Sci. Adv. Mater. 7, 423–432 (2015)CrossRefGoogle Scholar
  16. 16.
    T. Ramezanpour, H.M. Chenari, H. Ziyadi, Novel MnMoO4 nanofibers: preparation, microstructure analysis and optical properties. J. Mater. Sci. Mater. Electron. 28, 16220–16225 (2017)CrossRefGoogle Scholar
  17. 17.
    G. Singh, S. Chandra, Electrochemical performance of MnFe2O4 nanoferrites synthesized using thermal decomposition method. Int. J Hydrog Energy 43, 4058–4066 (2018)CrossRefGoogle Scholar
  18. 18.
    Y. Ding, Y. Wan, Y.L. Min, W. Zhang, S.H. Yu, General synthesis and phase control of metal molybdate hydrates MMoO4·nH2O (M = Co, Ni, Mn, n = 0, 3/4,1) Nano/Microcrystals by a hydrothermal approach: magnetic, photocatalytic, and electrochemical properties. Inorg. Chem. 47, 7813–7823 (2008)CrossRefGoogle Scholar
  19. 19.
    K. Pavani, A. Ramanan, Influence of 2-aminopyridine on the formation of molybdates under hydrothermal conditions. Eur. J. Inorg. Chem. 15, 3080–3087 (2005)CrossRefGoogle Scholar
  20. 20.
    P.J. Zapf, R.P. Hammond, R.C. Haushalter, J. Zubieta, Variations on a one-dimensional theme: the hydrothermal syntheses of inorganic/organic composite solids of the iron molybdate family. Chem. Mater. 10, 1366–1373 (1998)CrossRefGoogle Scholar
  21. 21.
    M. Kumar, R. Singh, H. Khajuria, H.N. Sheikh, Facile hydrothermal synthesis of nanocomposites of nitrogen doped graphene with metal molybdates (NGMMoO4) (M = Mn, Co, and Ni) for enhanced photo degradation of methylene blue. J. Mater. Sci. Mater. Electron. 28, 9423–9434 (2017)CrossRefGoogle Scholar
  22. 22.
    D. Ghosh, S. Giri, Md Moniruzzaman, T. Basu, M. Mandal, C. Kumar Das, α MnMoO4/graphene hybrid composite: high energy density supercapacitor electrode material. Dalton Trans. 43, 11067–11076 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Hu, Y. Cao, W. Li, K. Xu, Y. Zhang, T. Ji, R. Zou, J. Yang, Z. Qin, MnMoO4·4H2O nanoplates grown on a Ni foam substrate for excellent electrochemical properties. J. Mater. Chem. A 2, 20723–20728 (2014)CrossRefGoogle Scholar
  24. 24.
    G.K. Veerasubramani, K. Krishnamoorthy, R. Sivaprakasam, S.J. Kim, Sonochemical synthesis, characterization and electrochemical properties of MnMoO4 nanorods for supercapacitor applications. Mater. Chem. Phys. 147, 836–842 (2014)CrossRefGoogle Scholar
  25. 25.
    L. Wang, L. Yue, X. Zang, H. Zhu, X. Hao, Z. Leng, X. Liua, S. Chen, Synthesis of 3D α-MnMoO4 hierarchical architectures for high-performance super capacitor applications. Cryst. Eng. Commun. 18, 9286–9291 (2016)CrossRefGoogle Scholar
  26. 26.
    F. Namvar, F. Beshkar, M.S. Niasari, Novel microwave-assisted synthesis of leaf-like MnMoO4 nanostructures and investigation of their photo catalytic performance. J. Mater. Sci. Mater. Electron. 28, 7962–7968 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Maczka, M. Ptak, K. Hermanowicz, A. Majchrowski, A. Pikul, J. Hanuza, Lattice dynamics and temperature-dependent Raman and infrared studies of multiferroic Mn0.85Co0.15WO4 and Mn0.97Fe0.03WO4 crystals. Phys. Rev. B 83, 174439 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    M.N. Coelho, P.T.C. Freire, M. Maczka, C. Luz-Limac, G.D. Saraiva, W. Paraguassue, A.G. Souza Filhoa, P.S. Pizani, High-pressure Raman scattering of MgMoO4. Vib. Spectrosc 68, 34–39 (2013)CrossRefGoogle Scholar
  29. 29.
    C. Sekar, R.K. Selvan, S.T. Senthilkumar, B. Senthilkumar, C. Sanjeeviraja, Combustion synthesis and characterization of spherical α-MnMoO4 nanoparticles. Powder Technol. 215, 98–103 (2012)CrossRefGoogle Scholar
  30. 30.
    B. Senthilkumar, R. KalaiSelvan, D. Meyrick, M. Minakshi, Synthesis and characterization of manganese molybdate for symmetric capacitor applications. Int. J. Electrochem. Sci. 10, 185–193 (2015)Google Scholar
  31. 31.
    A. Clearfield, A. Moini, P.R. Rudolf, Preparation and structure of manganese molybdates. Inorg. Chem. 24, 4606–4609 (1985)CrossRefGoogle Scholar
  32. 32.
    L. Seguin, M. Figlarz, R. Cavagnat, J.-C. Lasskgues, Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·xH2O molybdenum trioxide hydrates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 51, 1323–1344 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    M.T. Thein, S.Y. Pung, A. Aziz, M. Itoh, The role of ammonia hydroxide in the formation of ZnO hexagonal nanodisks using sol–gel technique and their photocatalytic study. J. Exp. Nanosci. 10, 1068–1081 (2014)CrossRefGoogle Scholar
  34. 34.
    B. Yin, H. Ma, S. Wang, S. Chen, Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J. Phys. Chem. B 107, 8898–8904 (2003)CrossRefGoogle Scholar
  35. 35.
    X. Shi, X. Chen, X. Chen, S. Zhou, S. Lou, Y. Wang, L. Yuan, PVP assisted hydrothermal synthesis of BiOBr hierarchical nanostructures and high photocatalytic capacity. Chem. Eng. J. 222, 120–127 (2013)CrossRefGoogle Scholar
  36. 36.
    S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011)CrossRefGoogle Scholar
  37. 37.
    H. Song, R.M. Rioux, J.D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass, P. Yang, G.A. Somorjai, Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties. J. Am. Chem. Soc. 128, 3027–3037 (2006)CrossRefGoogle Scholar
  38. 38.
    H.C. Gao, F. Xiao, C.B. Ching, H.W. Duan, High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2, ACS. Appl. Mater. Interfaces 4, 2801–2810 (2011)CrossRefGoogle Scholar
  39. 39.
    M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Graphene-based ultra capacitors. Nano Lett. 8, 3498–3502 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    X. Xia, W. Lei, Q. Hao, W. Wang, X. Wang, Electrochim. Acta 99, 253 (2013)CrossRefGoogle Scholar
  41. 41.
    J. Haetge, I. Djerdj, T. Brezesinski, Chem. Commun. 48, 6726 (2012)CrossRefGoogle Scholar
  42. 42.
    B. Saravanakumar, T. Priyadharshini, G. Ravi, V. Ganesh, A. Sakunthala, R. Yuvakkumar, Hydrothermal synthesis of spherical NiCO2O4 nanoparticles as a positive electrode for pseudocapacitor applications. J Sol Gel Sci. Technol. 84, 297–305 (2017)CrossRefGoogle Scholar
  43. 43.
    B. Saravanakumar, S.P. Ramachandran, G. Ravi, V. Ganesh, A. Sakunthala, R. Yuvakkumar, Morphology dependent electrochemical capacitor performance of NiMoO4 nanoparticles. Mater. Lett. 209, 1–4 (2017)CrossRefGoogle Scholar
  44. 44.
    B. Saravanakumar, S.P. Ramachandran, G. Ravi, V. Ganesh, R.K. Guduru, R. Yuvakkumar, Electrochemical characterization of FeMnO3 microspheres as potential material for energy storage applications. Mater. Res. Express 5, 015504 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (POD) (Kluwer Academic/Plenum, New York, 1999)CrossRefGoogle Scholar
  46. 46.
    A. Balducci, D. Belanger, T. Brousse, J.W. Long, W. Sugimoto, A guideline for reporting performance metrics with electrochemical capacitors: from electrode materials to full devices. J. Electrochem. Soc. 164, A1487–A1488 (2017)CrossRefGoogle Scholar
  47. 47.
    S. Zhang, N.Pan,S.Performance Evaluation, Adv. Energy Mater. 5, 1401401 (2014)CrossRefGoogle Scholar
  48. 48.
    A. Laheaar, P. Przygocki, Q. Abbas, F. Beguin, Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem. Commun. 60, 21–25 (2015)CrossRefGoogle Scholar
  49. 49.
    R.S. Nicholson, Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 37, 1351–1355 (1965)CrossRefGoogle Scholar
  50. 50.
    B. Saravanakumar, S. Muthulakshmi, G. Ravi, V. Ganesh, A. Sakunthala, R. Yuvakkumar, Surfactant effect on synthesis and electrochemical properties of nickel-doped magnesium oxide (Ni–MgO) for supercapacitor applications. Appl. Phys. A. 123, 697–706 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • B. Saravanakumar
    • 1
  • S. P. Ramachandran
    • 1
  • G. Ravi
    • 1
  • V. Ganesh
    • 2
  • A. Sakunthala
    • 3
  • R. Yuvakkumar
    • 1
  1. 1.Nanomaterials Laboratory, Department of PhysicsAlagappa UniversityKaraikudiIndia
  2. 2.Electrodics and Electrocatalysis (EEC) DivisionCSIR-Central Electrochemical Research Institute (CSIR-CECRI)KaraikudiIndia
  3. 3.Department of Physics, School of Science and HumanitiesKarunya Institute of Science and TechnologyCoimbatoreIndia

Personalised recommendations