Solution-processed flexible non-volatile resistive switching device based on poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)]: polyvinylpyrrolidone composite and its conduction mechanism
- 66 Downloads
- 1 Citations
Abstract
Recently, solution-processed resistive switches for wearable electronics have got tremendous attention and are required for different applications due to their easy process and fabrication. Hence, this paper proposes the solution-processed resistive switching memory device based on two polymers, poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)] (F8BT) and polyvinylpyrrolidone (PVP) composite, which is fabricated on a flexible indium–tin–oxide (ITO)-coated polyethylene terephthalate (PET) substrate through spin coating technology. The fabricated device demonstrates a perfect non-volatile bipolar resistive switching through small operating voltage sweeping of ± 1.5 V, and its high-resistance state (HRS) and low-resistance state (LRS) are 92678.89 Ω and 337.85 Ω, respectively. To verify the non-volatility and long-term stability, the device is checked for more than 700 endurance cycles. During these cycles, the variations of HRS and LRS are 48 Ω and 37.35 Ω, respectively. The retention time is checked for more than 60 days, and the ROFF/RON ratio is 274.31. The bendability is carried out up to bending diameters < 10 mm, and FESEM is used for the morphological characteristics of the device. Conduction mechanism of the proposed device is supported by space charge-limited conduction (SCLC) which is explained by the log–log I–V slope-fitting curve. The results insure that the F8BT:PVP composite-based resistive switching device is to be a potential candidate for the future flexible and low-power non-volatile resistive switching memory device.
Abbreviations
- F8BT
Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)]
- PVP
Polyvinylpyrrolidone
- ITO
Indium–tin–oxide
- PET
Polyethylene terephthalate
- Ag
Silver
- THF
Tetrahydrofuran
- HRS
High-resistance state
- LRS
Low-resistance state
- V
Voltage
- I–V
Current–voltage
- SCLC
Space charge-limited conduction
Notes
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) (NRF-2016R1A2B4015627).
References
- 1.L.O. Chua, IEEE Trans. Circuit Theory (1971)Google Scholar
- 2.D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature (2008)Google Scholar
- 3.T. Raja, S. Mourad, in Proc. 5th IEEE Int. Symp. Electron. Des. Test Appl. DELTA 2010 (Ho Chi Minh City, Vietnam, 2010)Google Scholar
- 4.Y. Abbas, M.R. Park, Q. Hu, T.S. Lee, H. Abbas, T.-S. Yoon, C.J. Kang, J. Nanosci. Nanotechnol. (2016)Google Scholar
- 5.Y. Abbas, A.S. Sokolov, Y.R. Jeon, S. Kim, B. Ku, C. Choi, J. Alloys Compd. (2018)Google Scholar
- 6.S. Ali, J. Bae, C.H. Lee, Curr. Appl. Phys. (2016)Google Scholar
- 7.H. Abbas, Y. Abbas, S.N. Truong, K.S. Min, M.R. Park, J. Cho, T.S. Yoon, C.J. Kang, Semicond. Sci. Technol. (2017)Google Scholar
- 8.Y. Abbas, Y.R. Jeon, A.S. Sokolov, S. Kim, B. Ku, C. Choi, Sci. Rep. (2018)Google Scholar
- 9.S. Kim, Y. Abbas, Y.R. Jeon, A.S. Sokolov, B. Ku, C. Choi, Nanotechnology (2018)Google Scholar
- 10.S. Ali, A. Hassan, G. Hassan, J. Bae, C.H. Lee, Org. Electron. Phys. Mater. Appl. 51 (2017)Google Scholar
- 11.G. Hassan, S. Ali, J. Bae, C.H. Lee, Appl. Phys. A Mater. Sci. Process. 123 (2017)Google Scholar
- 12.G. Hassan, J. Bae, C.H. Lee, J. Mater. Sci. Mater. Electron. 29 (2018)Google Scholar
- 13.K.L. Wang, G. Liu, P.H. Chen, L. Pan, H.L. Tsai, Org. Electron. Phys. Mater. Appl. (2014)Google Scholar
- 14.W. Hu, X. Chen, G. Wu, Y. Lin, N. Qin, D. Bao, Appl. Phys. Lett. (2012)Google Scholar
- 15.S.G. Hu, S.Y. Wu, W.W. Jia, Q. Yu, L.J. Deng, Y.Q. Fu, Y. Liu, T.P. Chen, Nanosci. Nanotechnol. Lett. (2014)Google Scholar
- 16.Y. Zhang, Z. Duan, R. Li, C.J. Ku, P. Reyes, A. Ashrafi, Y. Lu, J. Electron. Mater. (2012)Google Scholar
- 17.S. Long, Q. Liu, H. Lv, Y. Li, Y. Wang, S. Zhang, W. Lian, K. Zhang, M. Wang, H. Xie, M. Liu, Appl. Phys. A Mater. Sci. Process. (2011)Google Scholar
- 18.K. Cherkaoui, S. Monaghan, M.A. Negara, M. Modreanu, P.K. Hurley, D. O’Connell, S. McDonnell, G. Hughes, S. Wright, R.C. Barklie, P. Bailey, T.C.Q. Noakes, J. Appl. Phys. (2008)Google Scholar
- 19.K.A. Bertness, A.W. Sanders, D.M. Rourke, T.E. Harvey, A. Roshko, J.B. Schlager, N.A. Sanford, Adv. Funct. Mater. (2010)Google Scholar
- 20.M.U. Khan, G. Hassan, M.A. Raza et al., Appl. Phys. A 124, 726 (2018)CrossRefADSGoogle Scholar
- 21.F. Qin, L. Ding, L. Zhang, F. Monticone, C.C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, C.W. Qiu, Sci. Adv. (2016)Google Scholar
- 22.M. Ungureanu, R. Zazpe, F. Golmar, P. Stoliar, R. Llopis, F. Casanova, L.E. Hueso, Adv. Mater. (2012)Google Scholar
- 23.T.M. McManus, L.La Spada, Y. Hao, J. Opt. (UK) (2016)Google Scholar
- 24.N.I. Zheludev, Y.S. Kivshar, Nat. Mater. (2012)Google Scholar
- 25.L. La Spada, L. Vegni, Opt. Express (2017)Google Scholar
- 26.Y. Lee, S.J. Kim, H. Park, B. Lee, Sensors (Switzerland) (2017)Google Scholar
- 27.L. La Spada, L. Vegni, Materials 11, 603 (2018)CrossRefADSGoogle Scholar
- 28.A. Vakil, N. Engheta, Science (2011)Google Scholar
- 29.L. La Spada, F. Bilotti, L. Vegni, Proc. Vol. 8306, Photon. Dev. Syst. V 83060IGoogle Scholar
- 30.Y. Liu, Y. Hao, K. Li, S. Gong, IEEE Antennas Wirel. Propag. Lett. (2016)Google Scholar
- 31.C. Langhammer, E.M. Larsson, B. Kasemo, I. Zorić, Nano Lett. (2010)Google Scholar
- 32.N. Engheta, Science (2007)Google Scholar
- 33.A.M. Shaltout, J. Kim, A. Boltasseva, V.M. Shalaev, A.V. Kildishev, Nat. Commun. (2018)Google Scholar
- 34.G. Hassan, J. Bae, C.H. Lee, A. Hassan, J. Mater. Sci. Mater. Electron. 29 (2018)Google Scholar
- 35.G. Hassan, F. Khan, A. Hassan, S. Ali, J. Bae, C.H. Lee, Nanotechnology 28 (2017)Google Scholar
- 36.S. Ali, A. Hassan, G. Hassan, J. Bae, C.H. Lee, Carbon N. Y. 105 (2016)Google Scholar
- 37.Y. Chen, G. Liu, C. Wang, W. Zhang, R.W. Li, L. Wang, Mater. Horizons (2014)Google Scholar
- 38.G. Baldi, S. Battistoni, G. Attolini, M. Bosi, C. Collini, S. Iannotta, L. Lorenzelli, R. Mosca, J.S. Ponraj, R. Verucchi, V. Erokhin, Semicond. Sci. Technol. (2014)Google Scholar
- 39.D.B. Strukov, J.L. Borghetti, R.S. Williams, Small (2009)Google Scholar
- 40.L. Qingjiang, A. Khiat, I. Salaoru, C. Papavassiliou, X. Hui, T. Prodromakis, Sci. Rep. (2014)Google Scholar
- 41.K.H. Chen, Y.C. Chen, Z.S. Chen, C.F. Yang, T.C. Chang, Appl. Phys. A Mater. Sci. Process. (2007)Google Scholar
- 42.T. Dam, S.S. Jena, D.K. Pradhan, J. Phys. Chem. C (2018)Google Scholar
- 43.R. Megha, S. Kotresh, Y.T. Ravikiran, C.H.V.V. Ramana, S.C. Vijaya, Kumari, S. Thomas, Compos. Interfaces (2017)Google Scholar
- 44.A. Uthayakumar, A. Pandian, S. Mathiyalagan, A. Kumar, A.K. Keshri, S. Omar, K. Balani, S.B. Krishna Moorthy, J. Phys. Chem. C (2016)Google Scholar
- 45.I. Bayrak Pehlivan, C.G. Granqvist, G.A. Niklasson, Electrochim. Acta (2014)Google Scholar
- 46.A.B. Bodade, A.B. Bodade, H.G. Wankhade, G.N. Chaudhari, D.C. Kothari, Talanta (2012)Google Scholar
- 47.S. Choudhary, R.J. Sengwa, Ionics (Kiel) (2011)Google Scholar
- 48.D.U. Lee, E.K. Kim, W.J. Cho, Y.H. Kim, Appl. Phys. A Mater. Sci. Process. (2011)Google Scholar
- 49.K. Gorshkov, T. Berzina, V. Erokhin, M.P. Fontana, Proced. Comput. Sci. (2011)Google Scholar
- 50.S. Ali, J. Bae, C.H. Lee, K.H. Choi, Y.H. Doh, Org. Electron. Phys. Mater. Appl. (2015)Google Scholar
- 51.N. Abilash, M., Sivapragash, Int. J. Appl. Innov. Eng. Manag. (2013)Google Scholar
- 52.L. La Spada, R. Iovine, L. Vegni, Adv. Nanopart. (2012)Google Scholar
- 53.M.N. Awais, M. Mustafa, M.N. Shehzad, U. Farooq, M.T. Hamayun, K.H. Choi, Micro Nano Lett. (2016)Google Scholar