Advertisement

Applied Physics A

, 125:18 | Cite as

Solution-processed flexible non-volatile resistive switching device based on poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)]: polyvinylpyrrolidone composite and its conduction mechanism

  • Gul Hassan
  • Muhammad Umair Khan
  • Jinho BaeEmail author
Article

Abstract

Recently, solution-processed resistive switches for wearable electronics have got tremendous attention and are required for different applications due to their easy process and fabrication. Hence, this paper proposes the solution-processed resistive switching memory device based on two polymers, poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)] (F8BT) and polyvinylpyrrolidone (PVP) composite, which is fabricated on a flexible indium–tin–oxide (ITO)-coated polyethylene terephthalate (PET) substrate through spin coating technology. The fabricated device demonstrates a perfect non-volatile bipolar resistive switching through small operating voltage sweeping of ± 1.5 V, and its high-resistance state (HRS) and low-resistance state (LRS) are 92678.89 Ω and 337.85 Ω, respectively. To verify the non-volatility and long-term stability, the device is checked for more than 700 endurance cycles. During these cycles, the variations of HRS and LRS are 48 Ω and 37.35 Ω, respectively. The retention time is checked for more than 60 days, and the ROFF/RON ratio is 274.31. The bendability is carried out up to bending diameters < 10 mm, and FESEM is used for the morphological characteristics of the device. Conduction mechanism of the proposed device is supported by space charge-limited conduction (SCLC) which is explained by the log–log IV slope-fitting curve. The results insure that the F8BT:PVP composite-based resistive switching device is to be a potential candidate for the future flexible and low-power non-volatile resistive switching memory device.

Abbreviations

F8BT

Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)]

PVP

Polyvinylpyrrolidone

ITO

Indium–tin–oxide

PET

Polyethylene terephthalate

Ag

Silver

THF

Tetrahydrofuran

HRS

High-resistance state

LRS

Low-resistance state

V

Voltage

IV

Current–voltage

SCLC

Space charge-limited conduction

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) (NRF-2016R1A2B4015627).

References

  1. 1.
    L.O. Chua, IEEE Trans. Circuit Theory (1971)Google Scholar
  2. 2.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature (2008)Google Scholar
  3. 3.
    T. Raja, S. Mourad, in Proc. 5th IEEE Int. Symp. Electron. Des. Test Appl. DELTA 2010 (Ho Chi Minh City, Vietnam, 2010)Google Scholar
  4. 4.
    Y. Abbas, M.R. Park, Q. Hu, T.S. Lee, H. Abbas, T.-S. Yoon, C.J. Kang, J. Nanosci. Nanotechnol. (2016)Google Scholar
  5. 5.
    Y. Abbas, A.S. Sokolov, Y.R. Jeon, S. Kim, B. Ku, C. Choi, J. Alloys Compd. (2018)Google Scholar
  6. 6.
    S. Ali, J. Bae, C.H. Lee, Curr. Appl. Phys. (2016)Google Scholar
  7. 7.
    H. Abbas, Y. Abbas, S.N. Truong, K.S. Min, M.R. Park, J. Cho, T.S. Yoon, C.J. Kang, Semicond. Sci. Technol. (2017)Google Scholar
  8. 8.
    Y. Abbas, Y.R. Jeon, A.S. Sokolov, S. Kim, B. Ku, C. Choi, Sci. Rep. (2018)Google Scholar
  9. 9.
    S. Kim, Y. Abbas, Y.R. Jeon, A.S. Sokolov, B. Ku, C. Choi, Nanotechnology (2018)Google Scholar
  10. 10.
    S. Ali, A. Hassan, G. Hassan, J. Bae, C.H. Lee, Org. Electron. Phys. Mater. Appl. 51 (2017)Google Scholar
  11. 11.
    G. Hassan, S. Ali, J. Bae, C.H. Lee, Appl. Phys. A Mater. Sci. Process. 123 (2017)Google Scholar
  12. 12.
    G. Hassan, J. Bae, C.H. Lee, J. Mater. Sci. Mater. Electron. 29 (2018)Google Scholar
  13. 13.
    K.L. Wang, G. Liu, P.H. Chen, L. Pan, H.L. Tsai, Org. Electron. Phys. Mater. Appl. (2014)Google Scholar
  14. 14.
    W. Hu, X. Chen, G. Wu, Y. Lin, N. Qin, D. Bao, Appl. Phys. Lett. (2012)Google Scholar
  15. 15.
    S.G. Hu, S.Y. Wu, W.W. Jia, Q. Yu, L.J. Deng, Y.Q. Fu, Y. Liu, T.P. Chen, Nanosci. Nanotechnol. Lett. (2014)Google Scholar
  16. 16.
    Y. Zhang, Z. Duan, R. Li, C.J. Ku, P. Reyes, A. Ashrafi, Y. Lu, J. Electron. Mater. (2012)Google Scholar
  17. 17.
    S. Long, Q. Liu, H. Lv, Y. Li, Y. Wang, S. Zhang, W. Lian, K. Zhang, M. Wang, H. Xie, M. Liu, Appl. Phys. A Mater. Sci. Process. (2011)Google Scholar
  18. 18.
    K. Cherkaoui, S. Monaghan, M.A. Negara, M. Modreanu, P.K. Hurley, D. O’Connell, S. McDonnell, G. Hughes, S. Wright, R.C. Barklie, P. Bailey, T.C.Q. Noakes, J. Appl. Phys. (2008)Google Scholar
  19. 19.
    K.A. Bertness, A.W. Sanders, D.M. Rourke, T.E. Harvey, A. Roshko, J.B. Schlager, N.A. Sanford, Adv. Funct. Mater. (2010)Google Scholar
  20. 20.
    M.U. Khan, G. Hassan, M.A. Raza et al., Appl. Phys. A 124, 726 (2018)CrossRefADSGoogle Scholar
  21. 21.
    F. Qin, L. Ding, L. Zhang, F. Monticone, C.C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, C.W. Qiu, Sci. Adv. (2016)Google Scholar
  22. 22.
    M. Ungureanu, R. Zazpe, F. Golmar, P. Stoliar, R. Llopis, F. Casanova, L.E. Hueso, Adv. Mater. (2012)Google Scholar
  23. 23.
    T.M. McManus, L.La Spada, Y. Hao, J. Opt. (UK) (2016)Google Scholar
  24. 24.
    N.I. Zheludev, Y.S. Kivshar, Nat. Mater. (2012)Google Scholar
  25. 25.
    L. La Spada, L. Vegni, Opt. Express (2017)Google Scholar
  26. 26.
    Y. Lee, S.J. Kim, H. Park, B. Lee, Sensors (Switzerland) (2017)Google Scholar
  27. 27.
    L. La Spada, L. Vegni, Materials 11, 603 (2018)CrossRefADSGoogle Scholar
  28. 28.
    A. Vakil, N. Engheta, Science (2011)Google Scholar
  29. 29.
    L. La Spada, F. Bilotti, L. Vegni, Proc. Vol. 8306, Photon. Dev. Syst. V 83060IGoogle Scholar
  30. 30.
    Y. Liu, Y. Hao, K. Li, S. Gong, IEEE Antennas Wirel. Propag. Lett. (2016)Google Scholar
  31. 31.
    C. Langhammer, E.M. Larsson, B. Kasemo, I. Zorić, Nano Lett. (2010)Google Scholar
  32. 32.
    N. Engheta, Science (2007)Google Scholar
  33. 33.
    A.M. Shaltout, J. Kim, A. Boltasseva, V.M. Shalaev, A.V. Kildishev, Nat. Commun. (2018)Google Scholar
  34. 34.
    G. Hassan, J. Bae, C.H. Lee, A. Hassan, J. Mater. Sci. Mater. Electron. 29 (2018)Google Scholar
  35. 35.
    G. Hassan, F. Khan, A. Hassan, S. Ali, J. Bae, C.H. Lee, Nanotechnology 28 (2017)Google Scholar
  36. 36.
    S. Ali, A. Hassan, G. Hassan, J. Bae, C.H. Lee, Carbon N. Y. 105 (2016)Google Scholar
  37. 37.
    Y. Chen, G. Liu, C. Wang, W. Zhang, R.W. Li, L. Wang, Mater. Horizons (2014)Google Scholar
  38. 38.
    G. Baldi, S. Battistoni, G. Attolini, M. Bosi, C. Collini, S. Iannotta, L. Lorenzelli, R. Mosca, J.S. Ponraj, R. Verucchi, V. Erokhin, Semicond. Sci. Technol. (2014)Google Scholar
  39. 39.
    D.B. Strukov, J.L. Borghetti, R.S. Williams, Small (2009)Google Scholar
  40. 40.
    L. Qingjiang, A. Khiat, I. Salaoru, C. Papavassiliou, X. Hui, T. Prodromakis, Sci. Rep. (2014)Google Scholar
  41. 41.
    K.H. Chen, Y.C. Chen, Z.S. Chen, C.F. Yang, T.C. Chang, Appl. Phys. A Mater. Sci. Process. (2007)Google Scholar
  42. 42.
    T. Dam, S.S. Jena, D.K. Pradhan, J. Phys. Chem. C (2018)Google Scholar
  43. 43.
    R. Megha, S. Kotresh, Y.T. Ravikiran, C.H.V.V. Ramana, S.C. Vijaya, Kumari, S. Thomas, Compos. Interfaces (2017)Google Scholar
  44. 44.
    A. Uthayakumar, A. Pandian, S. Mathiyalagan, A. Kumar, A.K. Keshri, S. Omar, K. Balani, S.B. Krishna Moorthy, J. Phys. Chem. C (2016)Google Scholar
  45. 45.
    I. Bayrak Pehlivan, C.G. Granqvist, G.A. Niklasson, Electrochim. Acta (2014)Google Scholar
  46. 46.
    A.B. Bodade, A.B. Bodade, H.G. Wankhade, G.N. Chaudhari, D.C. Kothari, Talanta (2012)Google Scholar
  47. 47.
    S. Choudhary, R.J. Sengwa, Ionics (Kiel) (2011)Google Scholar
  48. 48.
    D.U. Lee, E.K. Kim, W.J. Cho, Y.H. Kim, Appl. Phys. A Mater. Sci. Process. (2011)Google Scholar
  49. 49.
    K. Gorshkov, T. Berzina, V. Erokhin, M.P. Fontana, Proced. Comput. Sci. (2011)Google Scholar
  50. 50.
    S. Ali, J. Bae, C.H. Lee, K.H. Choi, Y.H. Doh, Org. Electron. Phys. Mater. Appl. (2015)Google Scholar
  51. 51.
    N. Abilash, M., Sivapragash, Int. J. Appl. Innov. Eng. Manag. (2013)Google Scholar
  52. 52.
    L. La Spada, R. Iovine, L. Vegni, Adv. Nanopart. (2012)Google Scholar
  53. 53.
    M.N. Awais, M. Mustafa, M.N. Shehzad, U. Farooq, M.T. Hamayun, K.H. Choi, Micro Nano Lett. (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ocean System EngineeringJeju National UniversityJejuRepublic of Korea
  2. 2.Division of Materials Science and EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations