Advertisement

Applied Physics A

, 125:17 | Cite as

Refractive index changes and optical absorption involving 1s–1p excitonic transitions in quantum dot under pressure and temperature effects

  • N. Aghoutane
  • M. El-Yadri
  • A. El Aouami
  • E. Feddi
  • F. DujardinEmail author
  • M. El Haouari
  • C. A. Duque
  • Chuong V. Nguyen
  • Huynh V. Phuc
Article
  • 57 Downloads

Abstract

The pressure and temperature effects on the optical responses involving the \(1s-1p\) intersubband transition of an exciton in a spherical quantum dot are investigated. Calculations are performed in the framework of the effective mass approximation and the energies are obtained by using a Ritz variational method. Our approach is based on the Hylleraas formalism were the correlations between the electron and hole are taken into account. Temperature, pressure and the size effects on the linear and third nonlinear optical properties are analyzed. Our results show that the temperature and pressure provide important effects on linear and nonlinear parts of the absorption coefficient (AC) and the relative refractive index change (RI) associated to the \(1s-1p\) transition. We found that by increasing the temperature and pressure the AC and RI curves shift to lower and higher energies respectively. Calculations show also that the dot size affects considerably the AC and RI and their corresponding amplitude.

Notes

Acknowledgements

C. A. Duque acknowledges the support by Colombian Agencies: CODI-Universidad de Antioquia (Estrategia de Sostenibilidad de la Universidad de Antioquia and projects “Efectos de capas delta dopadas en pozos cuánticos como fotodetectores en el infrarrojo” and “Efectos ópticos intersubbanda, no lineales de segundo orden y dispersión Raman, en sistemas asimétricos de pozos cuánticos acoplados”), and Facultad de Ciencias Exactas y Naturales-Universidad de Antioquia (CAD-exclusive dedication project 2018–2019). This work used resources of the Centro Nacional de Processamento de Alto Desempenho em São Paulo (CENAPAD-SP).

References

  1. 1.
    T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A.M. Seifalian, Biomaterials 28, 4717–4732 (2007)CrossRefGoogle Scholar
  2. 2.
    O. Salata, J. Nanobiotechnol. 2, 1–6 (2004)CrossRefGoogle Scholar
  3. 3.
    D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, U. Banin, Science 332, 77–81 (2011)CrossRefADSGoogle Scholar
  4. 4.
    P.M. Koenraad, M.E. Flatté, Nat. Mater. 10, 91–100 (2011)CrossRefADSGoogle Scholar
  5. 5.
    P. Harrison, Quantum wells, wires and dots (Wiley, New York, 2006)Google Scholar
  6. 6.
    G. Schmid, Nanoparticles from theory to applications, second edn. (Wiley-VCH, Velag GmbH & Co KGaA, New York, 2010)CrossRefGoogle Scholar
  7. 7.
    I. Karabulut, S. Baskoutas, J. Appl. Phys. 103, 073512 (2008)CrossRefADSGoogle Scholar
  8. 8.
    H.M. Baghramyan, M.G. Barseghyan, A.A. Kirakosyan, R.L. Restrepo, C.A. Duque, J. Lumin. 134, 594–599 (2013)CrossRefGoogle Scholar
  9. 9.
    J.C. Martinez-Orozco, K.A. Rodriguez-Magdaleno, J.R. Suarez-Lopez, C.A. Duque, R.L. Restrepo, Superlattices Microstruct. 92, 166–173 (2016)CrossRefADSGoogle Scholar
  10. 10.
    I. Karabulut, M.E. Mora-Ramos, C.A. Duque, J. Lumin. 131, 1502–1509 (2011)CrossRefGoogle Scholar
  11. 11.
    H. Yildirim, M. Tomak, Eur. Phys. J. B 50, 559–564 (2006)CrossRefADSGoogle Scholar
  12. 12.
    R. Kostić, D. Stojanović, J. Nanophotonics 5, 051810 (2011)CrossRefADSGoogle Scholar
  13. 13.
    S. Baskoutas, A.F. Terzis, Eur. Phys. J. B 69, 237–244 (2009)CrossRefADSGoogle Scholar
  14. 14.
    W. Xie, Phys. B 405, 3436–3440 (2010)CrossRefADSGoogle Scholar
  15. 15.
    E.C. Niculescu, M. Cristea, J. Lumin. 135, 120–127 (2013)CrossRefGoogle Scholar
  16. 16.
    M. El Haouari, A. Talbi, E. Feddi, H. El Ghazi, A. Oukerroum, F. Dujardin, Opt. Commun. 383, 231–237 (2017)CrossRefADSGoogle Scholar
  17. 17.
    I. Mal, J. Jayarubi, S. Das, A.S. Sharma, A.J. Peter, D.P. Samajdar, Phys. Status Solidi B (2018).  https://doi.org/10.1002/pssb.201800395 CrossRefGoogle Scholar
  18. 18.
    E. Owji, A. Keshavarz, H. Mokhtari, Superlattices Microstruct. 98, 276–282 (2016)CrossRefADSGoogle Scholar
  19. 19.
    E. Aksahin, V. Ustoglu Unal, M. Tomak, Phys. E 74, 258–263 (2015)CrossRefGoogle Scholar
  20. 20.
    E. Hanamura, Phys. Rev. B 37, 1273–1279 (1988)CrossRefADSGoogle Scholar
  21. 21.
    L. Lu, W. Xie, Z. Shu, Phys. B 406, 3735–3740 (2011)CrossRefADSGoogle Scholar
  22. 22.
    Z. Zeng, G. Gorgolis, C.S. Garoufalis, S. Baskoutas, Sci. Adv. Mater. 6, 1–6 (2014)CrossRefGoogle Scholar
  23. 23.
    S.Y. Lopez, N. Porras-Montenegro, C.A. Duque, Phys. Status Solidi (b) 246, 630–634 (2009)CrossRefADSGoogle Scholar
  24. 24.
    C.A. Duque, S.Y. Lopez, M.E. Mora-Ramos, Phys. Status Solidi (b) 244, 1964–1970 (2007)CrossRefADSGoogle Scholar
  25. 25.
    P.Y. Yu, M. Cordona, Fundamentals of semiconductors (Springer, Berlin, 1998)Google Scholar
  26. 26.
    F.J. Culchac, N. Porras-Montenegro, A. Latge, J. Appl. Phys. 105, 094324 (2009)CrossRefADSGoogle Scholar
  27. 27.
    H.M. Baghramyan, M.G. Barseghyan, A.A. Kirakosyan, R.L. Restrepo, C.A. Duque, J. Lumin. 134, 594–599 (2013)CrossRefGoogle Scholar
  28. 28.
    M.G. Barseghyan, M.E. Mora-Ramos, C.A. Duque, Eur. Phys. J. B 84, 265–271 (2011)CrossRefADSGoogle Scholar
  29. 29.
    F. Dujardin, E. Feddi, A. Oukerroum, J. Bosch Bailach, J. Martinez-Pastor, E. Assaid, J. Appl. Phys. 113, 064314 (2013)CrossRefADSGoogle Scholar
  30. 30.
    E. Feddi, A. Zouitine, A. Oukerroum, F. Dujardin, E. Assaid, M. Zazoui, J. Appl. Phys. 117, 064309 (2015)CrossRefADSGoogle Scholar
  31. 31.
    F. Dujardin, E. Feddi, E. Assaid, A. Oukerroum, Eur. Phys. J. B 74, 507–516 (2010)CrossRefADSGoogle Scholar
  32. 32.
    J.V. Atanasoff, Phys. Rev. 36, 1232–1242 (1930)CrossRefADSGoogle Scholar
  33. 33.
    M. Abramowitz, I.A. Stegun (eds.), Handbook of mathematical functions (Dover, New York, 1972)zbMATHGoogle Scholar
  34. 34.
    M.R.K. Vahdani, G. Rezaei, Phys. Lett. A 373, 3079–3084 (2009)CrossRefADSGoogle Scholar
  35. 35.
    A.R. Jafari, Phys. B 456, 72–77 (2015)CrossRefADSGoogle Scholar
  36. 36.
    J. Abraham, Hudson Mark, A. John Peter, J. Semicond. 33, 092001 (2012)CrossRefGoogle Scholar
  37. 37.
    A.John Peter, Phys. E 28, 225–229 (2005)CrossRefGoogle Scholar
  38. 38.
    H. El Ghazi, A. Jorio, I. Zorkani, Opt. Commun. 331, 73–76 (2014)CrossRefADSGoogle Scholar
  39. 39.
    S.J. Liang, W.F. Xie, Eur. Phys. J. B 80, 79–84 (2011)CrossRefADSGoogle Scholar
  40. 40.
    R. Khordad, Phys. B 407, 1128–1133 (2012)CrossRefADSGoogle Scholar
  41. 41.
    G. Staszczak, I. Gorczyca, T. Suski, X.Q. Wang, N.E. Christensen, A. Svane, E. Dimakis, T.D. Moustakas, J. Appl. Phys. 113, 123101 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • N. Aghoutane
    • 1
  • M. El-Yadri
    • 1
  • A. El Aouami
    • 1
  • E. Feddi
    • 1
  • F. Dujardin
    • 2
    Email author
  • M. El Haouari
    • 1
    • 3
  • C. A. Duque
    • 4
  • Chuong V. Nguyen
    • 5
  • Huynh V. Phuc
    • 6
  1. 1.Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSETMohammed V UniversityRabatMorocco
  2. 2.Université de LorraineMetzFrance
  3. 3.Centre Régional des Métiers de l’Education et de Formation (CRMEF)TangierMorocco
  4. 4.Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Antioquia UdeAMedellínColombia
  5. 5.Department of Materials Science and EngineeringLe Quy Don Technical UniversityHa NoiViet Nam
  6. 6.Division of Theoretical PhysicsDong Thap UniversityCao LãnhViet Nam

Personalised recommendations