Advertisement

Applied Physics A

, 125:4 | Cite as

Effects of selenium concentration in the precursor solution on the material properties of cadmium selenide flower-like nanoparticles

  • Sharon Kiprotich
  • Francis B. Dejene
  • Martin O. Onani
Article
  • 24 Downloads

Abstract

CdSe flower-like nanorods (NRs) were successfully synthesized by Sol–gel technique where a simple aqueous technique was applied. The effects of different selenium (Se) concentration in the precursor solution on the material properties were studied. The X-ray diffraction (XRD) analyses show that a cubic zinc blende crystal structure was formed. Variation in the crystallite sizes were observed for different amounts of Se used in the precursor. The sizes estimated from various techniques were in the range 3–5 nm. The XRD peak intensity reached an optimum when 8 mL of 0.5 M of reduced selenium was used. The surface topography obtained from the scanning electron microscope showed densely packed and uniformly distributed flower-like rod/blade-like shaped CdSe NRs. The Fourier transform infrared spectrophotometer gave the stretching vibrations of the CdSe NRs with some bands belonging to the capping agent and the solvent. Thermal analysis conducted portrayed the 8 mL sample to be more stable than other samples at various temperatures. The photoluminescence (PL) studies displayed a red shift in the emission peaks (550–575 nm) as the selenium concentration was increased from 4 to 12 mL. This was then followed by an increase in the PL peak intensity which reached a maximum at 8 mL of Se used during the synthesis. The band gap energies calculated from the absorption spectra decreased from 3.27 to 2.79 eV with an increase in the Se concentration. The percentage transmittance of CdSe NRs varied with different amounts of Se in the precursor solution.

Notes

Acknowledgements

The authors wish to acknowledge the financial support for this project from University of the Free State directorate of research fund and University of the Western Cape senate research fund.

References

  1. 1.
    V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370(6488), 354 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    M. Gao, B. Richter, S. Kirstein, H. Mohwald, Electroluminescence studies on self-assembled films of PPV and CdSe nanoparticles. J. Phys. Chem. B 102(21), 4096–4103 (1998)CrossRefGoogle Scholar
  3. 3.
    H. Mattoussi, L.H. Radzilowski, B.O. Dabbousi, E.L. Thomas, M.G. Bawendi, M.F. Rubner, Electroluminescence from heterostructures of poly (phenylene vinylene) and inorganic CdSe nanocrystals. J. Appl. Phys. 83(12), 7965–7974 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    N.P. Gaponik, D.V. Talapin, A.L. Rogach, A light-emitting device based on a CdTe nanocrystal/polyaniline composite. Phys. Chem. Chem. Phys. 1(8), 1787–1789 (1999)CrossRefGoogle Scholar
  5. 5.
    M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385), 2013–2016 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    W.C.W. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385), 2016–2018 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    G.P. Mitchell, C.A. Mirkin, R.L. Letsinger, Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121(35), 8122–8123 (1999)CrossRefGoogle Scholar
  8. 8.
    H. Weller, Colloidal semiconductor q-particles: chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Ed. 32(1), 41–53 (1993)CrossRefGoogle Scholar
  9. 9.
    A.P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100(31), 13226–13239 (1996)CrossRefGoogle Scholar
  10. 10.
    X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals. Nature 404(6773), 59 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    S.K. Tripathi, M. Sharma, Synthesis and optical study of green light emitting polymer coated CdSe/ZnSe core/shell nanocrystals. Mater. Res. Bull. 48(5), 1837–1844 (2013)CrossRefGoogle Scholar
  12. 12.
    R.B. Kale, C.D. Lokhande, Band gap shift, structural characterization and phase transformation of CdSe thin films from nanocrystalline cubic to nanorod hexagonal on air annealing. Semicond. Sci. Technol. 20(1), 1 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Q. Shen, D. Arae, T. Toyoda, Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates. J. Photochem. Photobiol. A 164(1–3), 75–80 (2004)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, Y. Xie, F. Xu, D. Xu, X. Liu, In situ polymerization template route to CdSe hollow spheres under UV irradiation. Inorg. Chem. Commun. 7(3), 417–419 (2004)CrossRefGoogle Scholar
  15. 15.
    X. Zheng, Y. Xie, L. Zhu, X. Jiang, A. Yan, Formation of vesicle-templated CdSe hollow spheres in an ultrasound-induced anionic surfactant solution. Ultrasonics Sonochem. 9(6), 311–316 (2002)CrossRefGoogle Scholar
  16. 16.
    O. Palchik, R. Kerner, A. Gedanken, A.M. Weiss, M.A. Slifkin, V. Palchik, Microwave-assisted polyol method for the preparation of CdSe “nanoballs”. J. Mater. Chem. 11(3), 874–878 (2001)CrossRefGoogle Scholar
  17. 17.
    S. Wageh, L. Shu-Man, X. Xu-Rong, Effect of aging on CdSe nanocrystals. Physica E 16(2), 269–273 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    L.I. Berger, Semiconductor Materials. (CRC Press, Boca Raton, 1996), pp. 202Google Scholar
  19. 19.
    Y. Bao, W. An, C.H. Turner, K.M. Krishnan, The critical role of surfactants in the growth of cobalt nanoparticles. Langmuir 26(1), 478–483 (2009)CrossRefGoogle Scholar
  20. 20.
    B.D. Cullity, Elements of X-ray diffraction, 3rd edn. (A.W.P.C., Massachusetts, 1967), pp. 188–190Google Scholar
  21. 21.
    C.S. Barret, T.B. Massalski, Structure of Metals (Pergamon Press, Oxford, 1980), p. 204Google Scholar
  22. 22.
    Joint Committee on Powder Diffraction Standards, International Centre for diffraction data, USA file no: 19-0191, 143 (1984)Google Scholar
  23. 23.
    J. Sakaliuniene, J. Cyviene, B. Abakeviciene, J. Dudonis, Investigation of structural and optical properties of GDC thin films deposited by reactive magnetron sputtering. VIII international conference (2010), p 141Google Scholar
  24. 24.
    V.D. Mote, Y. Purushotham, B.N. Dole, Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    N.S. Gonçalves, J.A. Carvalho, Z.M. Lima, J.M. Sasaki, Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Mater. Lett. 72, 36–38 (2012)CrossRefGoogle Scholar
  26. 26.
    H.N. Aliya, M.R. Johan, Optical and FTIR studies of CdSe quantum dots. In Nanoelectronics conference (INEC), 2010 3rd international, IEEE (2010), pp. 887–887Google Scholar
  27. 27.
    B. Stuart, Infrared Spectroscopy. (Wiley, New York, 2005)Google Scholar
  28. 28.
    S.Y. Oh, D.I. Yoo, Y. Shin, H.C. Kim, H.Y. Kim, Y.S. Chung, W.H. Park, J.H. Youk, Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 340(15), 2376–2391 (2005)CrossRefGoogle Scholar
  29. 29.
    Y. Nishiyama, P. Langan, H. Chanzy, Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124(31), 9074–9082 (2002)CrossRefGoogle Scholar
  30. 30.
    M. Schwanninger, J.C. Rodrigues, H. Pereira, B. Hinterstoisser, Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 36(1), 23–40 (2004)CrossRefGoogle Scholar
  31. 31.
    P.S. Nair, G.D. Scholes, Thermal decomposition of single source precursors and the shape evolution of CdS and CdSe nanocrystals. J. Mater. Chem. 16(5), 467–473 (2006)CrossRefGoogle Scholar
  32. 32.
    T. Trindade, P. O’Brien, N.L. Pickett, Nanocrystalline semiconductors: synthesis, properties and perspectives. Chem. Mater. 13(11), 3843 (2001)CrossRefGoogle Scholar
  33. 33.
    W.W. Yu, L. Qu, W. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15(14), 2854–2860 (2003)CrossRefGoogle Scholar
  34. 34.
    J. Jasieniak, L. Smith, J.V. Embden, P. Mulvaney, M. Califano, Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 113(45), 19468–19474 (2009)CrossRefGoogle Scholar
  35. 35.
    J. Tauc, in Amorphous and Liquid Semiconductors, ed. by J. Tauc. Optical Properties of Amorphous Semiconductors (Springer, Boston, MA, 1974), pp. 159–220CrossRefGoogle Scholar
  36. 36.
    S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, vol. 23. (Cambridge University Press, Cambridge, 1998)CrossRefGoogle Scholar
  37. 37.
    R. Koole, E. Groeneveld, D. Van maekelbergh, A. Meijerink, in Nanoparticles, ed. by C. de Mello Donega, Size Effects of Semiconductor Nanoparticles (Springer, Berlin, 2014), pp. 13–51Google Scholar
  38. 38.
    A.J. Deotale, R.V. Nandedkar, Correlation of particle size, strain and band gap of iron oxide nanoparticles. Mater. Today Proc. 3(6), 2069–2076 (2016)CrossRefGoogle Scholar
  39. 39.
    A.M. Maroof, Hegazy, A. El-Hameed, Characterization of CdSe-nanocrystals used in semiconductors for aerospace applications: production and optical properties. Astron. Geophys. 3(1), 82–87 (2014)Google Scholar
  40. 40.
    T. Kippeny, L.A. Swafford, S.J. Rosenthal, Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box. J. Chem. Educ. 79(9), 1094 (2002)CrossRefGoogle Scholar
  41. 41.
    E. Cohen, M.D. Sturge, Fluorescence line narrowing, localized exciton states, and spectral diffusion in the mixed semiconductor Cd SxSe1–x. Phys. Rev. B 25(6), 3828 (1982)ADSCrossRefGoogle Scholar
  42. 42.
    C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menendez-Proupin, A.I. Ekimov, Optical vibrons in CdSe dots and dispersion relation of the bulk material. Phys. Rev. B 57(8), 4664 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sharon Kiprotich
    • 1
  • Francis B. Dejene
    • 1
  • Martin O. Onani
    • 2
  1. 1.Department of PhysicsUniversity of the Free State (QwaQwa Campus)PhuthaditjhabaSouth Africa
  2. 2.Department of ChemistryUniversity of the Western CapeBellvilleSouth Africa

Personalised recommendations