Advertisement

Applied Physics A

, 125:75 | Cite as

Superior creep behavior of n-SiCp/Mg–9%Al composites fabricated by ultrasonic-assisted semi-solid hot pressing of powder

  • Ming Li
  • Qiang ChenEmail author
  • Gaozhan Zhao
  • Zhiwei Huang
  • Jianquan Tao
  • Yuanyuan Wan
  • Hongxia WangEmail author
Article
  • 29 Downloads

Abstract

The n-SiCp/Mg–9%Al composites reinforced with 7.5 wt% SiC nanoparticles were fabricated by semi-solid powder hot pressing technique-assisted with ultrasonic, which show finer grains and a more uniform microstructure compared to Mg–9%Al alloys. The steady-creep rates of the nanocomposite were approximately 12 times lower than those of the Mg–9%Al matrix alloy at 200 °C under an applied stress of 70 MPa due to the strengthening effect of the nano-sized SiCp. The creep resistance of the nanocomposite was investigated at temperatures between 175 and 225 °C under an applied stress in the range of 70–90 MPa. The creep stress exponents were 5.86–7.95, implying that the dominant creep mechanisms in the nanocomposite are dislocation climb and particle strengthening-controlled creep. The activation energies obtained for creep were in the range of 102–146 kJ/mol, which are higher than those for boundary diffusion and are believed to be associated with self-diffusion and the diffusion of Al atoms in the Mg matrix.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51301118, 51375464 and 51404166), the National Natural Science Foundation of Shanxi Province (No. 201701D121045) and Shanxi Key Laboratory of Advanced Magnesium Based Material Taiyuan University of Technology (AMM-2017-12).

References

  1. 1.
    M.E. Turan, Y. Sun, Y. Akgul, J. Alloy. Compd. 740, 1149 (2018)CrossRefGoogle Scholar
  2. 2.
    H. Lin, M.B. Yang, H. Tang, F.S. Pan, Prog. Nat. Sci. Mater. 28, 66 (2018)CrossRefGoogle Scholar
  3. 3.
    S.J. Huang, A.N. Ali, Mater. Sci. Eng. A 711, 670 (2018)CrossRefGoogle Scholar
  4. 4.
    H. Somekawa, T. Tsuru, Mater. Sci. Eng. A 708, 267 (2017)CrossRefGoogle Scholar
  5. 5.
    N.S. Martynenko, E.A. Lukyanova, V.N. Serebryany, M.V. Gorshenkov, I.V. Shchetinin, G.I. Raab, S.V. Dobatkin, Y. Estrin, Mater. Sci. Eng. A 712, 625 (2018)CrossRefGoogle Scholar
  6. 6.
    X. Du, W.B. Du, Z.H. Wang, K. Liu, S.B. Li, Mater. Sci. Eng. A 711, 633 (2018)CrossRefGoogle Scholar
  7. 7.
    S.S. Zhou, K.K. Deng, J.C. Li, S.J. Shang, W. Liang, J.F. Fan, Mater. Des. 63, 672 (2014)CrossRefGoogle Scholar
  8. 8.
    M.B. Yang, Y. Zhu, X.F. Liang, F.S. Pan, Mater. Sci. Eng. A 528, 1721 (2011)CrossRefGoogle Scholar
  9. 9.
    K.B. Nie, X.J. Wang, K. Wu, X.S. Hu, M.Y. Zheng, Mater. Sci. Eng. A 540, 123 (2012)CrossRefGoogle Scholar
  10. 10.
    T. Jin, Z.W. Zhou, J. Qiu, Z.H. Wang, D. Zhao, X.F. Shu, S.R. Yan, J. Alloy. Compd. 738, 79 (2018)CrossRefGoogle Scholar
  11. 11.
    J.F. Li, X.J. He, R.Q. Hang, X.B. Huang, X.Y. Zhang, B. Tang, Ceram. Int. 43, 13683 (2017)CrossRefGoogle Scholar
  12. 12.
    K.B. Nie, X.J. Wang, X.S. Hu, L. Xu, K. Wu, M.Y. Zheng, Mater. Sci. Eng. A 528, 5278 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Srinivasana, J. Swaminathanb, M.K. Gunjanb, U.T.S. Pillai, B.C. Paia, Mater. Sci. Eng. A 527, 1395 (2010)CrossRefGoogle Scholar
  14. 14.
    P.S. Roodposhti, A. Sarkar, K.L. Murty, R.O. Scattergood, J. Mater. Eng. Perform. 25, 3697 (2016)CrossRefGoogle Scholar
  15. 15.
    K.M. Asl, A. Tari, F. Khomamizadeh, Mater. Sci. Eng. A 523(1–2), 1 (2009)Google Scholar
  16. 16.
    S.M. Zhu, M.A. Gibson, M.A. Easton, J.F. Nie, Scr. Mater. 63, 698 (2010)CrossRefGoogle Scholar
  17. 17.
    K.B. Nie, X.J. Wang, K. Wu, L. Xu, M.Y. Zheng, X.S. Hu, Processing, J. Alloy. Compd. 509, 8664 (2011)CrossRefGoogle Scholar
  18. 18.
    H. Zhang, Y.C. Zhao, Y. Yan, J.F. Fan, L.F. Wang, H.B. Dong, B.S. Xu, J. Alloy. Compd. 725, 652 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Li, H.X. Wang, K.B. Nie, Y.M. Liu, W. Liang, Microstructure and tensile properties of n-SiCp/Mg–9%Al composites prepared by ultrasonic assisted hot pressing of powder. J. Mater. Eng. Perform. 26, 1847 (2016)CrossRefGoogle Scholar
  20. 20.
    G. Li, M. Li, H.X. Wang, Z.Y. Zhang, W.L. Cheng, W. Liang, C.J. Zhang, Dependence of microstructure characteristics and mechanical properties on nanosize SiCp contents in Mg–9Al matrix composites fabricated by ultrasonic-assisted semisolid powder hot pressing. J. Mater. Res.  https://doi.org/10.1557/jmr.2018.182
  21. 21.
    L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X.L. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, X.C. Li, Nature 528, 539 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    W.S. Tian, Q.L. Zhao, Q.Q. Zhang, F. Qiu, Q.C. Jiang, Mater. Sci. Eng. A 700, 42 (2017)CrossRefGoogle Scholar
  23. 23.
    B.L. Mordike, Mater. Sci. Eng. A 324, 103 (2002)CrossRefGoogle Scholar
  24. 24.
    A.E. Hammad, A.A. Ibrahiem, Microelectron. Reliab. 75, 187 (2017)CrossRefGoogle Scholar
  25. 25.
    C.J. Bettles, Mater. Sci. Eng. A 348, 280 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Southwest Technology and Engineering Research InstituteChongqingPeople’s Republic of China
  2. 2.Shanxi Key Laboratory of Advanced Magnesium Based Materials, School of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations