Advertisement

Applied Physics A

, 124:869 | Cite as

Reusable surface-enhanced Raman substrates using microwave annealing

  • V. M. Papadakis
  • G. Kenanakis
Article
  • 61 Downloads

Abstract

In this work, we report the fabrication of large-scale homogeneous surface-enhanced Raman scattering (SERS) substrates using a microwave annealing (MWA) process on Ag thin films on silicon, using a typical low-cost domestic microwave oven, avoiding the use of chemicals and stabilizing agents, or time-consuming and expensive approaches. We provide evidence that in 5–15 s, uniform and reproducible SERS substrates of several centimeter squares can be grown, providing a Raman signal enhancement of five orders of magnitude, for an incident Raman laser with an intensity as low as ~ 0.035 mW, against the characterization of Rhodamine 6G, which is a standard test molecule for SERS. Moreover, we tested the reusability of the fabricated MWA SERS substrates under conditions as tough as ultrasonic sonication in isopropyl alcohol and acetone for 15 min, respectively, and we demonstrate that our SERS substrates can be efficiently reused for more than six times after sonication, which is quite critical since it minimizes the cost of the procedure to minimum.

Notes

Acknowledgements

This work was supported by the European Research Council under ERC advanced grant no. 320081 (PHOTOMETA). Author V.P. acknowledges the financial support of the Stavros Niarchos Foundation within the framework of the project ARCHERS (“Advancing Young Researchers’ Human Capital in Cutting Edge Technologies in the field of Systems Biology Approaches and Personal Genomics for Health and Disease Treatment”). The authors would also like to thank Ms. Manousaki Aleka, for her help in the SEM measurements.

References

  1. 1.
    P. Larkin, Infrared and Raman Spectroscopy Principles and Spectral Interpretation (Elsevier, Inc., Oxford, 2011)Google Scholar
  2. 2.
    A.H. Kuptsov, G.N. Zhizhin, Handbook of Fourier Transform Raman and Infrared Spectra of Polymers (Elsevier Science, Amsterdam, 1998)Google Scholar
  3. 3.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, Hoboken, 1997)Google Scholar
  4. 4.
    V.P. Tolstoy, I.V. Chernyshova, V.A. Skryshevsky, Handbook of Infrared Spectroscopy of Ultrathin Films (Wiley, Hoboken, 2003)CrossRefGoogle Scholar
  5. 5.
    B.W. Barry, H.G.M. Edwards, A.C. Williams, Fourier transform Raman and infrared vibrational study of human skin: assignment of spectral bands. J. Raman Spectrosc. 23, 641–645 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    I.J. Pence, D.B. Beaulieu, S.N. Horst, X. Bi, A.J. Herline, D.A. Schwartz, A. Mahadevan-Jansen, Clinical characterization of in vivo inflammatory bowel disease with Raman spectroscopy. ‎Biomed. Opt. Express 8, 524–535 (2017)CrossRefGoogle Scholar
  7. 7.
    J.D. Gelder, K.D. Gussem, P. Vandenabeele, L. Moens, Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38, 1133–1147 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    S. Wartewig, R.H.H. Neubert, Pharmaceutical applications of mid-IR and Raman spectroscopy. Adv. Drug Deliv. Rev. 57, 1144–1170 (2005)CrossRefGoogle Scholar
  9. 9.
    F. Casadio, C. Daher, L. Bellot-Gurlet, Raman spectroscopy of cultural heritage materials: overview of applications and new frontiers in instrumentation, sampling modalities, and data processing. Top. Curr. Chem. 374, 62 (2016)CrossRefGoogle Scholar
  10. 10.
    G. Bitossi, R. Giorgi, M. Mauro, B. Salvadori, L. Dei, Spectroscopic techniques in cultural heritage conservation: a survey. Appl. Spectrosc. Rev. 40, 187–228 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    G. Shi, Y. Zhu, M. Wang, Y.C. LinShen, X. Wang, R. Xu, W. Li, Ma, Comparison of surface-enhanced Raman scattering (SERS) effectiveness of Au nanoparticles/cicada wing substrates prepared by different methods. Optik 149, 36–42 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    T.-W. Chang, S. Seo, H. Jin, X. Wang, G.L. Liu, Comparison of surface-enhanced Raman spectroscopy on absorbing and nonabsorbing nanostructured substrates. J. Phys. Chem. C 118, 18693–18699 (2014)CrossRefGoogle Scholar
  13. 13.
    D.L. Jeanmaire, R.P.V. Duyne, Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84, 1–20 (1977)CrossRefGoogle Scholar
  14. 14.
    K.N. Kanipe, P.P.F. Chidester, G.D. Stucky, C.D. Meinhart, M. Moskovits, Properly structured, any metal can produce intense surface enhanced Raman spectra. J. Phys. Chem. C 121, 14269–14273 (2017)CrossRefGoogle Scholar
  15. 15.
    R.A. Halvorson, P.J. Vikesland, Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ. Sci. Technol. 44, 7749–7755 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    F. Shao, Z. Lu, C. Liu, Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing. ACS Appl. Mater. Interfaces 6, 6281–6289 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Mabbott, Y. Xu, R. Goodacre, Objective assessment of SERS thin films: comparison of silver on copper via galvanic displacement with commercially available fabricated substrates. Anal. Methods 9, 4783–4789 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)CrossRefGoogle Scholar
  19. 19.
    S. Schlücker, Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 53, 4756–4795 (2014)CrossRefGoogle Scholar
  20. 20.
    B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P.V. Duyne, SERS: materials, applications, and the future. Mater. Today, 15, 16–25 (2012)CrossRefGoogle Scholar
  21. 21.
    A.P. Craig, A.S. Franca, J. Irudayaraj, Surface-enhanced Raman spectroscopy applied to food safety. Annu. Rev. Food Sci. Technol. 4, 369–380 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, H. Qiu, Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine. ACS Appl. Mater. Interfaces 7, 10977–10987 (2015)CrossRefGoogle Scholar
  23. 23.
    X. Qian, X.-H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008)CrossRefGoogle Scholar
  24. 24.
    X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M.S. Dresselhaus, J. Zhang, Z. Liu, Can graphene be used as a substrate for Raman enhancement? Nano Lett. 10, 553–561 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    G. Xiao, Y. Li, W. Shi, L. Shen, Q. Chen, L. Huang, Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper. Appl. Surf. Sci. 404, 334–341 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    A. Pimentel, A. Araújo, B.J. Coelho, D. Nunes, M.J. Oliveira, M.J. Mendes, H. Águas, R. Martins, E. Fortunato, 3D ZnO/Ag surface-enhanced Raman scattering on disposable and flexible cardboard platforms. Materials 10, 1351 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    A. Musumeci, D. Gosztola, T. Schiller, N.M. Dimitrijevic, V. Mujica, D. Martin, T. Rajh, SERS of semiconducting nanoparticles (TiO2 hybrid composites). J. Am. Chem. Soc. 131, 6040–6041 (2009)CrossRefGoogle Scholar
  28. 28.
    R. Livingstone, X. Zhou, M.C. Tamargo, J.R. Lombardi, Surface enhanced Raman spectroscopy of pyridine on CdSe/ZnBeSe quantum dots grown by molecular beam epitaxy. J. Phys. Chem. C 114, 17460–17464 (2010)CrossRefGoogle Scholar
  29. 29.
    Y. Chu, M.G. Banaee, K.B. Crozier, Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies. ACS Nano 4, 2804–2810 (2010)CrossRefGoogle Scholar
  30. 30.
    A.G. Brolo, E. Arctander, R. Gordon, Nanohole-Enhanced raman scattering. Nano Lett. 4, 2015–2018 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    D. Wang, K.B. Crozier, W. Zhu, Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model. Opt. Express 19, 14919–14928 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    M.J. Beliatis, S.J. Henley, S.R.P. Silva, Engineering the plasmon resonance of large area bimetallic nanoparticle films by laser nanostructuring for chemical sensors. Opt. Lett. 36, 1362–1364 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    H.Y. Wu, C.J. Choi, B.T. Cunningham, Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array. Small 8, 2778–2885 (2012)Google Scholar
  34. 34.
    H. Im, K.C. Bantz, S.H. Lee, T.W. Johnson, C.L. Haynes, S.H. Oh, Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensin. Adv. Mater. 25, 2678–2685 (2013)CrossRefGoogle Scholar
  35. 35.
    T. Ding, L.O. Herrmann, B.d. Nijs, F. Benz, J.J. Baumberg, Self-aligned colloidal lithography for controllable and tuneable plasmonic nanogaps. Small 11, 2139–2143 (2015)CrossRefGoogle Scholar
  36. 36.
    M. Fan, A.G. Brolo, Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys. Chem. Chem. Phys. 11, 7381–7389 (2009)CrossRefGoogle Scholar
  37. 37.
    J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang, Z.Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    G. Shi, Y. Zhu, M. Wang, L. Shen, Y. Chen, Y. Wang, X. Xu, R. Li, W. Ma, Comparison of surface-enhanced Raman scattering (SERS) effectiveness of Au nanoparticles/cicada wing substrates prepared by different methods. Optik 149, 36–42 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    N.T. Panagiotopoulos, N. Kalfagiannis, K.C. Vasilopoulos, N. Pliatsikas, S. Kassavetis, G. Vourlias, M.A. Karakassides, P. Patsalas, Self-assembled plasmonic templates produced by microwave annealing: applications to surface-enhanced Raman scattering. Nanotechnology 26, 205603 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    A.M. Michaels, M. Nirmal, L.E. Brus, Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 121, 9932–9939 (1999)CrossRefGoogle Scholar
  41. 41.
    C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)CrossRefGoogle Scholar
  42. 42.
    W. Wu, P.N. Njoki, H. Han, H. Zhao, E.A. Schiff, P.S. Lutz, L. Solomon, S. Matthews, M.M. Maye, Processing core/alloy/shell nanoparticles: tunable optical properties and evidence for self-limiting alloy growth. J. Phys. Chem. C 115, 9933–9942 (2011)CrossRefGoogle Scholar
  43. 43.
    S.C. Fong, C.Y. Wang, T.H. Chang, T.S. Chin, Crystallization of amorphous Si film by microwave annealing with SiC susceptors. Appl. Phys. Lett. 94, 102104 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    C. Fu, Y. Wang, P. Xu, L. Yue, F. Sun, D.W. Zhang, S.-L. Zhang, J. Luo, C. Zhao, D. Wu, Understanding the microwave annealing of silicon. AIP Adv. 7, 035214 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    H.A. Alarifi, M. Atiş, C. Özdoğan, A. Hu, M. Yavuz, Y. Zhou, Determination of complete melting and surface premelting points of silver nanoparticles by molecular dynamics simulation. J. Phys. Chem. C 117, 12289–12298 (2013)CrossRefGoogle Scholar
  46. 46.
    D. Loganathan, A. Gnanavelbabu, K. Rajkumar, R. Ramadoss, Effect of microwave heat treatment on mechanical properties of AA6061 sheet metal. Procedia Eng. 97, 1692–1697 (2014)CrossRefGoogle Scholar
  47. 47.
    S.G. Sundaresan, M.V. Rao, Y. Tian, J.A. Schreifels, M.C. Wood, K.A. Jones, A.V. Davydov, Comparison of solid-state microwave annealing with conventional furnace annealing of ion-implanted SiC. J. Electron. Mater. 36, 324–331 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    E.T. Thostenson, T.W. Chou, Microwave processing: fundamentals and applications. Appl. Sci. Manuf. 30, 1055–1071 (1999)CrossRefGoogle Scholar
  49. 49.
    K. Saitou, Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders. Scr. Mater. 54, 875–879 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    R.M. Ankelekar, D.K. Agrwal, R. Roy, Microwave sintering and mechanical properties of PM copper steel. Powder Metall. 44, 355–362 (2001)CrossRefGoogle Scholar
  51. 51.
    M. Gupta, W.L.E. Wong, Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering. Scr. Mater. 52, 479–483 (2005)CrossRefGoogle Scholar
  52. 52.
    P. Hildebrandt, M. Stockburger, Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 88, 5935–5944 (1984)CrossRefGoogle Scholar
  53. 53.
    E.C.L. Ru, E. Blackie, M. Meyer, P.G. Etchegoin, Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111, 13794–13803 (2007)CrossRefGoogle Scholar
  54. 54.
    M. Sun, C. Qian, W. Wu, W. Yu, Y. Wang, H. Mao, Self-assembly nanoparticle based tripetaloid structure arrays as surface-enhanced Raman scattering substrates. Nanotechnology 23, 385303 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    C. Kavitha, K. Bramhaiah, S.J. Neena, B.E. Ramachandran, Low cost, ultra-thin films of reduced graphene oxide-Ag nanoparticle hybrids as SERS based excellent dye sensors. Chem. Phys. Lett. 629, 81–86 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology-HellasHeraklionGreece
  2. 2.Institute of Electronic Structure and LaserFoundation for Research and Technology-HellasHeraklionGreece

Personalised recommendations