Advertisement

Applied Physics A

, 125:5 | Cite as

Performance enhancement of novel antipodal Vivaldi antenna with irregular spacing distance slots and modified-w-shaped metamaterial loading

  • Run-Chun Deng
  • Xiao-ming Yang
  • Bo Ma
  • Tian-qian Li
  • Hong-yuan Chen
  • Yu Yang
  • Hang He
  • Yuan-wen Chen
  • Zhu Tang
Article
  • 34 Downloads

Abstract

This paper proposes a novel enhanced far-field performance antipodal Vivaldi antenna (AVA) by including slots into the flare with irregular spacing distance between each other and modified-w-shaped metamaterial (MWSM) unit cells etched on both sides of the substrate. The MWSM unit cell is simulated in finite element method commercially available software HFSS version16 and the effective parameters of the meta-atom are extracted by homogenization retrieval method based on transmission and reflection coefficients. Electric field and surface current distribution are displayed to qualitatively explain the occurrence of near-zero index permittivity, permeability and refraction index in 10 GHz. The unloaded and loaded modeled AVA simulation is provided, respectively, in detail and manufacturing procedure is conducted to verify the effectiveness of the suggested ideas. The return loss measurement indicated a good impedance match between the bare AVA and the loading composite MWSM unit cells despite little discrepancy compared to the simulation results. Numerical simulation reveals that the gain of the composite AVA increases from 7.5 to 11.52 dB after loading with the irregular spacing distance slots in the flare and MWSM unit cells etched substrate. The half-power beamwidth decreased from 72.4° to 41.4° for the E-plane and reduced to 33.38° from 63.4° for the H-plane, respectively. The measured results of the fabricated prototype are consistent with the simulated ones with slight discrepancy. This presented strategy will combine the advantages of the lens effect of metamaterial on the AVA and modified radiating flare, thus keeping the low profile of the whole structure all the time.

Notes

Acknowledgements

The work was supported by Ministry of Education “chunhui plan” (Z2016147), (Z2017073), the Key Fund Project of Sichuan Provincial Department of Education (16ZA0154), Sichuan Science and Technology Program under Grant 2018GZ0518 and the Innovation Fund of Postgraduate, Xihua University (ycjj2018076). The authors would also like to thank Yong-mao Huang at Xihua University and Yong-jun Huang at the School of Information and Communication Engineering in University of Electronic Science and Technology of China for their useful discussion.

References

  1. 1.
    Y. Dong, J. Choi, T. Itoh, Vivaldi antenna with pattern diversity for 0.7 to 2.7 GHz cellular band applications. IEEE Antennas Wirel. Propag. Lett. 17(2), 247–250 (2018)ADSGoogle Scholar
  2. 2.
    E.G. Tianang, M.A. Elmansouri, D.S. Filipovic, Ultra-wideband lossless cavity-backed Vivaldi antenna. IEEE Trans. Antennas Propag. 66(1), 115–124 (2018)ADSGoogle Scholar
  3. 3.
    X. Ren, S. Liao, Q. Xue, Design of wideband circularly polarized Vivaldi antenna with stable radiation pattern. IEEE Access 6, 637–644 (2018)Google Scholar
  4. 4.
    B. Biswas, R. Ghatak, D.R. Poddar, A fern fractal leaf inspired wideband antipodal Vivaldi antenna for microwave imaging system. IEEE Trans. Antennas Propag. 65(11), 6126–6129 (2017)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    M. Sonkki, D. Sánchez-Escuderos, V. Hovinen et al., Wideband dual-polarized cross-shaped Vivaldi antenna. IEEE Trans. Antennas Propag. 63(6), 2813–2819 (2015)ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    P.J. Gibson, “The Vivaldi aerial,” in Proceedings of 9th European Microwave Conference (Bringhton, 1979), pp. 101–105Google Scholar
  7. 7.
    S. Zhu, H. Liu, Z. Chen et al., A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mm wave application. IEEE Antennas Wirel. Propag. Lett. 17(5), 776–779 (2018)ADSGoogle Scholar
  8. 8.
    W.T. Sethi, M.A. Ashraf, A. Ragheb, A. Alasaad, S.A. Alshebeili, Demonstration of millimeter wave 5G setup employing high-gain Vivaldi array. Int. J. Antennas Propag. (2018).  https://doi.org/10.1155/2018/3927153 (Article ID 3927153)Google Scholar
  9. 9.
    I.T. Nassar, T.M. Weller, A novel method for improving antipodal Vivaldi antenna performance. IEEE Trans. Antennas Propag. 63(7), 3321–3324 (2015)ADSGoogle Scholar
  10. 10.
    A. Molaei, M. Kaboli, S.A. Mirtaheri et al., Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications. IET Microw. Antennas Propag. 8(14), 1137–1142 (2014)Google Scholar
  11. 11.
    M. Amiri, F. Tofigh, A.G. Yazdi et al., Exponential antipodal Vivaldi antenna with exponential dielectric lens. IEEE Antennas Wirel. Propag. Lett. 16, 1792–1795 (2017)Google Scholar
  12. 12.
    M. Moosazadeh, High-gain antipodal Vivaldi antenna surrounded by dielectric for wideband applications. IEEE Trans. Antennas Propag. 66(8), 4349–4352 (2018)ADSGoogle Scholar
  13. 13.
    G. Teni, N. Zhang, J. Qiu et al., Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation. IEEE Antennas Wirel. Propag. Lett. 12, 417–420 (2013)ADSGoogle Scholar
  14. 14.
    A.M. De Oliveira, M.B. Perotoni, S.T. Kofuji et al., A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. IEEE Antennas Wirel. Propag. Lett. 14, 1334–1337 (2015)ADSGoogle Scholar
  15. 15.
    J. Bai, S. Shi, D.W. Prather, Modified compact antipodal Vivaldi antenna for 4–50 GHz UWB application. IEEE Trans. Microw. Theory Tech. 59(4), 1051–1057 (2011)ADSGoogle Scholar
  16. 16.
    Y.W. Wang, Z.W. Yu, A novel symmetric double-slot structure for antipodal Vivaldi antenna to lower cross-polarization level. IEEE Trans. Antennas Propag. 65(10), 5599–5604 (2017)ADSGoogle Scholar
  17. 17.
    Y. Zhang, E. Li, C. Wang et al., Radiation enhanced Vivaldi antenna with double-antipodal structure. IEEE Antennas Wirel. Propag. Lett. 16, 561–564 (2017)ADSGoogle Scholar
  18. 18.
    R. Salhi, M. Labidi, M.A. Boujemaa et al., Dual-band microstrip patch antenna based on metamaterial refractive surface. Appl. Phys. A 123(6), 420 (2017)ADSGoogle Scholar
  19. 19.
    S. Attachi, C. Saleh, M. Bouzouad, Microstrip antenna gain enhancement with metamaterial radome. Appl. Phys. A 123(1), 78 (2017)ADSGoogle Scholar
  20. 20.
    D. Bensafieddine, S. Attachi, S.M. Chaker et al., Agile radiation pattern control of metamaterial microstrip antenna. Appl. Phys. A 123(1), 24 (2017)ADSGoogle Scholar
  21. 21.
    S.M. Chaker, M. Bouzouad, Metamaterial patch antenna radiation pattern agility. Appl. Phys. A 115(2), 459–465 (2014)ADSGoogle Scholar
  22. 22.
    W. Lv, F. Xie, Y. Huang et al., Nonlinear coupling states study of electromagnetic force actuated plasmonic nonlinear metamaterials. Opt. Express 26(3), 3211–3220 (2018)ADSGoogle Scholar
  23. 23.
    H.X. Xu, G.M. Wang, M.Q. Qi, L. Li, T.J. Cui, Three-dimensional super lens composed of fractal left-handed materials. Adv. Opt. Mater. 1(7), 495–502 (2013)Google Scholar
  24. 24.
    H.X. Xu, G.M. Wang, K. Ma, T.J. Cui, Superscatterer illusions without using complementary media. Adv. Opt. Mater. 2(6), 572–580 (2014)Google Scholar
  25. 25.
    H.X. Xu, G.M. Wang, M.Q. Qi, Y.Y. Lv, X. Gao, Metamaterial lens made of fully printed resonant-type negative-refractive index transmission lines. Appl. Phys. Lett. 102(19), 193502 (2013)ADSGoogle Scholar
  26. 26.
    H.X. Xu, G.M. Wang, M.Q. Qi, Z.M. Xu, A metamaterial antenna with frequency-scanning omnidirectional radiation patterns. Appl. Phys. Lett. 101(17), 173501 (2012)ADSGoogle Scholar
  27. 27.
    Y. Huang, L. Yang, J. Li, Y. Wang, G. Wen, Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna. Appl. Phys. Lett. 109(5), 054101 (2016)ADSGoogle Scholar
  28. 28.
    B. Ma, X. Yang et al., Study on the gain enhancement of microstrip patch antenna incorporated with trapezoid-shaped metamaterial. J. Xihua Univ. (Natural Science Edition) 35(2), 34–38 (2016)Google Scholar
  29. 29.
    B. Ma, X. Yang et al., Study on arrow-shaped metamaterial design and its application in wireless power transmission. J. Xihua Univ. (Natural Science Edition) 34(5), 47–50 (2015)Google Scholar
  30. 30.
    B. Ma, X. Yang, Li et al., Gain and directivity enhancement of microstrip antenna loaded with multiple splits octagon-shaped metamaterial superstrate. Int. J. Appl. Electromagn. Mech. 50(1), 201–213 (2016)Google Scholar
  31. 31.
    B. Ma, X. Yang, Li et al., Gain enhancement of transmitting antenna incorporated with double-cross-shaped electromagnetic metamaterial for wireless power transmission. Opt. Int. J. Light Electron Opt. 127(16), 6754–6762 (2016)Google Scholar
  32. 32.
    T. Li, B. Ma, X. Du et al., A novel design of microstrip patch antenna array with modified-I-shaped electromagnetic metamaterials applied in microwave wireless power transmission. Opt. Int. J. Light Electron Opt. 173(22), 193–205 (2018)Google Scholar
  33. 33.
    B. Zhou, T.J. Cui, Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials. IEEE Antennas Wirel. Propag. Lett. 10, 326–329 (2011)ADSGoogle Scholar
  34. 34.
    M. Sun, Z.N. Chen, X. Qing, Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial. IEEE Trans. Antennas Propag. 61(4), 1741–1746 (2013)ADSGoogle Scholar
  35. 35.
    L. Chen, Z. Lei, R. Yang et al., A broadband artificial material for gain enhancement of antipodal tapered slot antenna. IEEE Trans. Antennas Propag. 63(1), 395–400 (2015)ADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    X. Li, H. Zhou, Z. Gao et al., Metamaterial slabs covered UWB antipodal Vivaldi antenna. IEEE Antennas Wirel. Propag. Lett. 16, 2943–2946 (2017)ADSGoogle Scholar
  37. 37.
    D.R. Smith, D.C. Vier, T. Koschny et al., Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71(3), 036617 (2005)ADSGoogle Scholar
  38. 38.
    H. Xun-Jun, W. Yue, M. Jin-Shuo et al., Three-dimensional surface current loops in broadband responsive negative refractive metamaterial with isotropy. Chin. Phys. B 21(4), 044101 (2012)ADSGoogle Scholar
  39. 39.
    J. Wang, S. Qu, Z. Xu et al., Broadband planar left-handed metamaterials using split-ring resonator pairs. Photonics Nanostruct. Fundam. Appl. 7(2), 108–113 (2009)ADSGoogle Scholar
  40. 40.
    C.A. Balanis, Antenna Theory: Analysis and Design. (Wiley, New York, 2005)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Run-Chun Deng
    • 1
  • Xiao-ming Yang
    • 1
  • Bo Ma
    • 1
    • 2
  • Tian-qian Li
    • 1
  • Hong-yuan Chen
    • 3
  • Yu Yang
    • 1
  • Hang He
    • 4
  • Yuan-wen Chen
    • 5
  • Zhu Tang
    • 6
  1. 1.School of Electrical Engineering and Electronic InformationXihua UniversityChengduChina
  2. 2.No. 95786 Unit Troops of the People’s Liberation ArmyChengduChina
  3. 3.Alps Electric Co., Ltd.TokyoJapan
  4. 4.Army Logistics University of PLAChongqingChina
  5. 5.Engineering University of the Chinese People’s Armed Police ForceXi’anChina
  6. 6.Air Force Early Warning AcademyWuhanChina

Personalised recommendations