Applied Physics A

, 125:16 | Cite as

Planar capacitive type humidity sensor fabricated using PTB7-Th by facile solution processing approach

  • Lih Wei Lim
  • Fakhra AzizEmail author
  • Zubair AhmadEmail author
  • Nur Adilah Roslan
  • Azzuliani Supangat
  • Khaulah Sulaiman


A capacitive humidity sensor using coplanar electrodes coated with poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl](PTB7-Th) thin film (Al/PTB7-Th/Al) has been fabricated and investigated. In the present work, we show that increased sensitivity is obtained by rough and non-uniform surface morphology of the polymer thin film which comprises distinct peaks and valleys. The sensor shows good sensing behavior with enhanced sensitivity, better linearity and larger bandwidth. The device showed sensitivity over an appreciable range of relative humidity levels (between 20 and 95% RH). Typical adsorption and desorption response times were measured to be 20 s each.



Authors (L. W. L., A. S. and K. S.) are extremely thankful to the Ministry of Education for the financial support under High Impact Research (HIR) Institut Pengurusan dan Pemantauan Penyelidikan, Universiti Malaya (Grant UM.S/625/3/HIR/MOE/26), Fundamental Research Grant Scheme (FRGS) FP046-2015A and University Malaya under University Malaya Research Grant (UMRG) RP007A-13AFR and RP007A/2011A. F. A. would like to acknowledge the support of Higher Education Commission (HEC) of Pakistan through Postdoctoral Fellowship.


  1. 1.
    S. Seneviratne et al., Summer dryness in a warmer climate: a process study with a regional climate model. Clim. Dyn. 20(1), 69–85 (2002)CrossRefGoogle Scholar
  2. 2.
    L. Bertocchi et al., Seasonal variations in the composition of Holstein cow’s milk and temperature–humidity index relationship. Animal 8(04), 667–674 (2014)CrossRefGoogle Scholar
  3. 3.
    J.J. Bruzual et al., Effects of relative humidity during incubation on hatchability and body weight of broiler chicks from young breeder flocks. Poult. Sci. 79(6), 827–830 (2000)CrossRefGoogle Scholar
  4. 4.
    A.S. El-Hagrasy, F. D’Amico, J.K. Drennen, A process analytical technology approach to near-infrared process control of pharmaceutical powder blending. Part I: D-optimal design for characterization of powder mixing and preliminary spectral data evaluation. J. Pharm. Sci. 95(2), 392–406 (2006)CrossRefGoogle Scholar
  5. 5.
    C.-L. Dai et al., A nanowire WO3 humidity sensor integrated with micro-heater and inverting amplifier circuit on chip manufactured using CMOS–MEMS technique. Sens. Actuators B 123(2), 896–901 (2007)CrossRefGoogle Scholar
  6. 6.
    L.-T. Chen, C.-Y. Lee, W.-H. Cheng, MEMS-based humidity sensor with integrated temperature compensation mechanism. Sens. Actuators A Phys. 147(2), 522–528 (2008)CrossRefGoogle Scholar
  7. 7.
    E. Raza et al., Influence of thermal annealing on a capacitive humidity sensor based on newly synthesized macroporous PBObzT 2. Sens. Actuators B Chem. 235, 146–153 (2016)CrossRefGoogle Scholar
  8. 8.
    T. Fei et al., Humidity sensor based on a cross-linked porous polymer with unexpectedly good properties. RSC Adv. 4(41), 21429–21434 (2014)CrossRefGoogle Scholar
  9. 9.
    K. Liu et al., The effect of humidity on the electrical behavior of a cationic conjugated polyelectrolyte based on poly (phenylene vinylene). Sens. Actuators B 135(2), 597–602 (2009)CrossRefGoogle Scholar
  10. 10.
    Y.Y. Qiu et al., A CMOS humidity sensor with on-chip calibration. Sens. Actuators A Phys. 92(1–3), 80–87 (2001)CrossRefGoogle Scholar
  11. 11.
    L. Gu, Q.-A. Huang, M. Qin, A novel capacitive-type humidity sensor using CMOS fabrication technology. Sens. Actuators B 99(2–3), 491–498 (2004)CrossRefGoogle Scholar
  12. 12.
    C.-L. Dai, A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS–MEMS technique. Sens. Actuators B 122(2), 375–380 (2007)CrossRefGoogle Scholar
  13. 13.
    F. Aziz et al., Characterization of vanadyl phthalocyanine based surface-type capacitive humidity sensors. J. Semicond. 31, 114002 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    F. Aziz et al., Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Meas. Sci. Technol. 23(6), 9501 (2012)CrossRefGoogle Scholar
  15. 15.
    M. Shah, M.H. Sayyad, K.S. Karimov. Fabrication and study of nickel phthalocyanine based surface type capacitive sensors, in Proceedings of World Academy of Science, Engineering and Technology (2008)Google Scholar
  16. 16.
    M. Tahir et al., Humidity, light and temperature dependent characteristics of Au/N-BuHHPDI/Au surface type multifunctional sensor. Sens. Actuators B 192(0), 565–571 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Saleem, M.H. Sayyad, K.S. Karimov, M. Yaseen, M. Ali, Cu(II) 5,10,15,20-tetrakis(4′-isopropylphenyl) porphyrin based surface-type resistive–capacitive multifunctional sensor. Sens. Actuators B Chem. 137(2), 442–446 (2009)CrossRefGoogle Scholar
  18. 18.
    M. Tahir et al., Enhancement in the sensing properties of methyl orange thin film by TiO2 nanoparticles. Int. J. Mod. Phys. B 28, 1450032 (2014) (11 pages) ADSCrossRefGoogle Scholar
  19. 19.
    M.I. Azmer et al., Humidity dependent electrical properties of an organic material DMBHPET. Measurement 61, 180–184 (2015)CrossRefGoogle Scholar
  20. 20.
    P.-G. Su, Y.-L. Sun, C.-C. Lin, Humidity sensor based on PMMA simultaneously doped with two different salts. Sens. Actuators B 113(2), 883–886 (2006)CrossRefGoogle Scholar
  21. 21.
    Q. Lin, Y. Li, M. Yang, Investigations on the sensing mechanism of humidity sensors based on electrospun polymer nanofibers. Sens. Actuators B Chem. 171–172, 309–314 (2012)CrossRefGoogle Scholar
  22. 22.
    Z. Ahmad et al., Humidity-dependent characteristics of methyl-red thin film-based Ag/methyl-red/Ag surface-type cell. Phys. E 41(1), 18–22 (2008)CrossRefGoogle Scholar
  23. 23.
    K.S. Karimov et al., Electrochemical properties of Zn/orange dye aqueous solution/carbon cell. J. Power Sources 155(2), 475–477 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    M.T. Saeed, C., et al., Orange dye—polyaniline composite based impedance humidity sensors. Chin. Phys. B 22(1), 010701 (2013)CrossRefGoogle Scholar
  25. 25.
    Y. Liu et al., Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Liang et al., For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22(20), E135–E138 (2010)CrossRefGoogle Scholar
  27. 27.
    H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14(5), 7881–7939 (2014)CrossRefGoogle Scholar
  28. 28.
    Z.M. Rittersma, Recent achievements in miniaturised humidity sensors—a review of transduction techniques. Sens. Actuators A Phys. 96(2–3), 196–210 (2002)CrossRefGoogle Scholar
  29. 29.
    Z. Ahmad et al., A humidity sensing organic–inorganic composite for environmental monitoring. Sensors 13(3), 3615–3624 (2013)CrossRefGoogle Scholar
  30. 30.
    Y. Zhang et al., Characterization and humidity sensing properties of the sensor based on Na2Ti3O7 nanotubes. J. Nanosci. Nanotechnol. 14(6), 4303–4307 (2014)CrossRefGoogle Scholar
  31. 31.
    Y. Wang et al., A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens. Actuators B 149(1), 136–142 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    J. Das et al., Role of parasitics in humidity sensing by porous silicon. Sens. Actuators A Phys. 94(1), 44–52 (2001)CrossRefGoogle Scholar
  33. 33.
    K.S. Karimov et al., Humidity and illumination organic semiconductor copper phthalocyanine sensor for environmental monitoring. Environ. Monit. Assess. 141(1), 323–328 (2008)CrossRefGoogle Scholar
  34. 34.
    Z. Ahmad, H. Muhammad, K.S. Sayyad, Karimov, Capacitive hygrometers based on natural organic compound. Optoelectron. Adv. Mater. Rapid Commun. 2, 507–510 (2008)Google Scholar
  35. 35.
    S.H. Xiao et al., Structure and humidity sensing properties of barium strontium titanate/silicon nanoporous pillar array composite films. Thin solid films 517(2), 929–932 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    L.Y. Li et al., High-performance capacitive humidity sensor based on silicon nanoporous pillar array. Thin solid films 517(2), 948–951 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    F. Gutman, L.E. Lyons, Organic Semiconductors Part A, Robert E (Krieger Publishing, Malabar, FL, Florida, USA, 1981)Google Scholar
  38. 38.
    Z. Ahmad et al., Potential of 5,10,15,20-Tetrakis (3′,5′-di-tertbutylphenyl) porphyrinatocopper (II) for a multifunctional sensor. Sens. Actuators B 155(1), 81–85 (2011)CrossRefGoogle Scholar
  39. 39.
    F. Wahab et al., Sensing properties of cobalt-phthalocyanine-based multipurpose sensor. J. Electron. Mater. 46(4), 2045–2052 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    M.I. Azmer et al., Organic humidity sensing film optimization by embedding inorganic nano-anatase TiO2 powder. Appl. Phys. A 124(7), 508 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Low Dimensional Materials Research Centre, Department of PhysicsUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Electronics, Faculty of Physical and Numerical SciencesUniversity of PeshawarPeshawarPakistan
  3. 3.Center for Advanced Materials (CAM)Qatar UniversityDohaQatar
  4. 4.Department of Physics, Faculty of ScienceUniversity Putra MalaysiaSardangMalaysia

Personalised recommendations