Applied Physics A

, 124:862 | Cite as

Structure, dielectric behaviours, enhanced polarization responses and energy storage properties in (1 − x)SrTiO3xBi(Mg1/2Ti1/2)O3 ceramics

  • Yongxing WeiEmail author
  • Gang Xu
  • Changqing Jin
  • Yiming Zeng
  • Kang Yan
  • Siyuan Dong
  • Peng Li


In this work, ceramics of (1 − x)SrTiO3xBi(Mg1/2Ti1/2)O3 (ST–BMT, x = 0.05–0.5) were successfully prepared. A single-phase perovskite structure is formed for all the compositions. The average structure is cubic at room temperature. The Raman analysis suggests that the 5 mol% BMT addition might cause the existence of the local tetragonal distortions at room temperature. All the compositions display a frequency-dependent and highly diffused dielectric anomaly. The BMT addition can effectively shift the freezing temperature (Tf), from ~ 32 K for x = 0.1 up to ~ 240 K for x = 0.5. The compositions with x = 0.4 and 0.5 show a small change in the relative permittivity (Δε′/\({\varepsilon ^{\prime}_{373\,K}}\) < ± 15% at 1 kHz) and keep low values of the dielectric loss (tanδ < 0.01 for x = 0.01 at 1 kHz) in the temperature range of 373–523 K. The BMT addition induces an enhancement of the polarization maxima. Among the compositions, 0.7ST–0.3BMT shows the optimum energy storage performance (Wrec, 0.78 J/cm3).



This work was financially supported by National Natural Science Foundation of China (Project no. 11704301), Natural Science Basic Research Plan in Shaanxi Province of China (Program no. 2018JQ1092) and President’s Fund of Xi’an Technological University (Project no. XAGDXJJ18006).


  1. 1.
    M.A. Beuerlein, N. Kumar, T. Usher, H.J. Brown-Shaklee, N. Raengthon, I.M. Reaney, D.P. Cann, J.L. Jones, G.L. Brennecka, J. Am. Ceram. Soc. 99, 2849 (2016)CrossRefGoogle Scholar
  2. 2.
    H. Ogihara, C.A. Randall, S. Trolier-Mckinstry, J. Am. Ceram. Soc. 92, 110 (2009)CrossRefGoogle Scholar
  3. 3.
    H.C. Yu, Z.G. Ye, J. Appl. Phys. 103, 034114 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    C.C. Huang, D.P. Cann, J. Appl. Phys. 104, 024117 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Y.X. Wei, C.Q. Jin, Y.M. Zeng, X.T. Wang, G. Xu, X.L. Wang, Materials 8, 8355 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Q. Zhang, Z. Li, F. Li, Z. Xu, J. Am. Ceram. Soc. 94, 4335 (2011)CrossRefGoogle Scholar
  7. 7.
    J. Wang, Y. Liu, Q. Li, K. Lau, R.L. Withers, Z.R. Li, Z. Xu, Appl. Phys.Lett. 103, 042910 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    A. Singh, C. Moriyoshi, Y. Kuroiwa, D. Pandey, Appl. Phys. Lett. 103, 121907 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    D. Hou, T.-M. Usher, H.H. Zhou, N. Raengthon, N. Triamnak, D.P. Cann, J.S. Forrester, J.L. Jones, J. Appl. Phys. 122, 064103 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    R.T. Sun, X.L. Wang, J. Shi,  L. Wang,  Appl. Phys. A 104, 129 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    N. Kumar, A. Ionin, T. Ansell, S. Kwon, W. Hackenberger, D. Cann, Appl. Phys. Lett. 106(25), 252901 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    T. Wang, L. Jin, C.C. Li, Q.Q. Hu, X.Y. Wei, J. Am. Ceram. Soc. 98, 559 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Liu, Q. Ying, X.Q. Liu, X.M. Chen, Chin. Phys. Lett. 32, 025201 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    N. Kumar, D.P. Cann, J. Am. Ceram. Soc. 98, 2548 (2015)CrossRefGoogle Scholar
  15. 15.
    R. Pandey, R.K. Pillutla, U. Shankar, A.K. Singh, J. Appl. Phys. 113, 184109 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    M. Suewattana, D.J. Singh, S. Limpijumnong, Phys. Rev. B 86, 064105 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)CrossRefGoogle Scholar
  18. 18.
    M. Suchomel, A.M. Fogg, M. Allix, H. Niu, J.B. Claridge, M.J. Rosseinsky, Chem. Mater. 18, 4987 (2006)CrossRefGoogle Scholar
  19. 19.
    A. Goaz, V. Uvarov, I. Popov, S. Shenawi-Khalil, Y. Sasson, J. Alloys Compd. 514, 30 (2012)CrossRefGoogle Scholar
  20. 20.
    R.D. Shannon, Acta. Cryst. A 32, 751 (1976)CrossRefGoogle Scholar
  21. 21.
    K.A. Miiller, H. Burkard, Phys. Rev. B 19, 3593 (1979)ADSCrossRefGoogle Scholar
  22. 22.
    W.G. Nilsen, J.G. Skinner, J. Chem. Phys. 48, 2240 (1968)ADSCrossRefGoogle Scholar
  23. 23.
    P.A. Fleury, J.F. Scott, J.M. Worlock, Phys. Rev. Lett. 21, 16 (1968)ADSCrossRefGoogle Scholar
  24. 24.
    J. Petzelt, T. Ostapchuk, I. Gregora, I. Rychetsky, S. Hoffmann-Eifert, A.V. Pronin, Y. Yuzyuk, B.P. Gorshunov, S. Kamba, V. Bovtun, J. Pokorny, M. Savinov, V. Porokhonskyy, D. Rafaja, P. Vanek, A. Almeida, M.R. Chaves, A.A. Volkov, M. Dressel, R. Waser, Phys. Rev. B 64, 184111 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Q.Y. Hu, J.H. Bian, P.S. Zelenovskiy, Y. Tian, L. Jin, X.Y. Wei, Z. Xu, V.Y. Shur, J. Appl. Phys. 124, 054101 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    X.H. Chen, J. Chen, D.D. Ma, L. Fang, H.F. Zhou, J. Am. Ceram. Soc. 98, 804 (2015)CrossRefGoogle Scholar
  27. 27.
    S.Y. Zheng. E. Odendo. L.J. Liu. D.P. Shi. Y.M. Huang. L.L. Fan. J. Chen. L. Fang, B. Elouadi, J. App. Phys. 113, 094102 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    N. Triamnak, R. Yimnirun, J. Pokorny, D.P. Cann, J. Am. Ceram. Soc. 96, 3176 (2013)Google Scholar
  29. 29.
    T.-M. Usher, T. Iamsasri, J.S. Forrester, N. Raengthon, N. Triamnak, D.P. Cann, J.L. Jones, J. App. Phys. 120, 184102 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    D.H. Choi, A. Baker, M. Lanagan, S. Trolier-McKinstry, C. Randall, J. Am. Ceram. Soc. 96, 2197 (2013)CrossRefGoogle Scholar
  32. 32.
    Y.X. Wei, C.Q. Jin, Y.M. Zeng, X.T. Wang, D. Gao, Ceram. Int. 43(12), 17220 (2017)CrossRefGoogle Scholar
  33. 33.
    Z.H. Yao, S. Zhe, H. Hua, Z.Y. Yu, M.H. Cao, S.J. Zhang, M.T. Lanagan, H.X. Liu, Adv. Mater. 29, 1601727 (2017)CrossRefGoogle Scholar
  34. 34.
    T. Wu, Y.P. Pu, T.T. Zong, P. Gao, J. Alloys Compd. 584, 461 (2014)CrossRefGoogle Scholar
  35. 35.
    F.F. Wang, L.L. Fan, Y. Ren, J. Chen, X.R. Xing,  Appl. Phys. Lett. 104, 252901 (2014)Google Scholar
  36. 36.
    T. Shi, L. Xie, L. Gu, J. Zhu, Sci. Rep. 5, 8606 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials and Chemical EngineeringXi’an Technological UniversityXi’anChina
  2. 2.State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum MetalsKunming Institute of Precious MetalsKunmingChina
  3. 3.MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of ScienceXi’an Jiaotong UniversityXi’anChina
  4. 4.Northwest Institute for Nonferrous Metal ResearchXi’anChina

Personalised recommendations