Advertisement

Applied Physics A

, 124:865 | Cite as

Extracting method of dynamic effective parameters for plate-type elastic metamaterials with decentralized resonant mass

  • Yicai Xu
  • Jiu Hui WuEmail author
  • Fuyin MaEmail author
Article

Abstract

In this paper, a method is presented to obtain both in-plane and out-plane dynamic effective parameters of plate-type elastic metamaterials with decentralized resonant mass. The method is derived by plate-type elastic metamaterials with concentrated resonant mass, and the effective material properties are obtained by averaging local physical field in each phase when prescribed displacements are applied on the boundaries of the unit cells. The accuracy of the method is verified, since the frequency ranges of negative mass density are the same with those of band gaps. In addition, the starting and ending of negative mass density are analyzed by eigenstates on the bandgap edges. Multi-negative parameters are produced by abundant resonances exhibited in the unit cells when synergetic motions are generated by the decentralized resonant mass. The proposed method is extended to determine the effective properties of the plate-type elastic metamaterials with decentralized resonant mass. Compared with the calculated effective properties of the model with concentrated resonant mass, more negative mass density regions are formed both in-plane and out-plane for the model with decentralized resonant mass. Moreover, negative moduli are also generated by monopolar and quadrupolar resonances, and the negative hybrid dispersion bands are produced by the combination of negative mass density and negative moduli. The calculated results show that the proposed method is convenient to determine both in-plane and out-plane dynamic effective parameters of plate-type elastic metamaterials with complex internal structures, and easier than the method based on the Mie scattering solution. Therefore, the proposed method will be helpful in designing plate-type elastic metamaterials with resonant micro-structures.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 51675401 and 51705395. *Correspondence and requests for materials should be addressed to Jiu Hui Wu (Email: ejhwu@xjtu.edu.cn) or Fuyin Ma (Email: xjmafuyin@xjtu.edu.cn).

References

  1. 1.
    S.A. Cummer, J. Christensen, A. Alù, Nat. Rev. Mater. 1, 16001 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77–79 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. Chan, P. Sheng, Science 289, 1734–1736 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    X.N. Liu, G.K. Hu, G.L. Huang, C.T. Sun, Appl. Phys. Lett. 98, 251907 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Lai, Y. Wu, P. Sheng, Z.Q. Zhang, Nat. Mater. 10, 620–624 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    R. Zhu, X.N. Liu, G.L. Huang, H.H. Huang, C.T. Sun, Phys. Rev. B 86, 144307 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    F.Y. Ma, J.H. Wu, M. Huang, S.W. Zhang, Appl. Phys. A 122, 525 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    F. Ma, M. Huang, Y. Xu, J.H. Wu, J. Appl. Phys. 123, 035104 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Liu, C.T. Chan, P. Sheng, Phys. Rev. B 71, 014103 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    V. Fokin, M. Ambati, C. Sun, X. Zhang, Phys. Rev. B 76, 144302 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Wu, Y. Lai, Z. Zhang, Phys. Rev. B 76, 205313 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    X. Zhou, G. Hu, Phys. Rev. B 79, 195109 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    X. Zhou, X. Liu, G. Hu, Theor. Appl. Mech. Lett. 2, 041001 (2012)CrossRefGoogle Scholar
  16. 16.
    X. Zhou, G. Hu, Acta Mech. 224, 1233–1241 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    P. Li, S. Yao, X. Zhou, G. Huang, G. Hu, J. Acoust. Soc. Am. 135, 1844–1852 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    M. Oudich, B. Djafari-Rouhani, Y. Pennec, M.B. Assouar, B. Bonello, J. Appl. Phys. 116, 184504 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    D. Torrent, Y. Pennec, B. Djafari-Rouhani, Phys. Rev. B 90, 104110 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Xu, J.H. Wu, F. Ma, Phys. B 543, 18–26 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    G. Ma, C. Fu, G. Wang, P.Del Hougne, J. Christensen, Y. Lai, P. Sheng, Nat. Commun. 7, 13536 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Wang, Q. Zhang, K. Zhang, G. Hu, Adv. Mater. 28, 9857–9861 (2016)CrossRefGoogle Scholar
  23. 23.
    F. Ma, J.H. Wu, M. Huang, W. Zhang, S. Zhang, J. Phys. D Appl. Phys. 48, 175105 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    F. Ma, M. Huang, J.H. Wu, J. Appl. Phys. 121, 015102 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Wang, H. Zhao, H. Yang, J. Zhong, D. Zhao, Z. Lu, J. Wen, J. Appl. Phys. 123, 185109 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    S. Guenneau, A. Movchan, G. Pétursson, S.A. Ramakrishna, New J. Phys. 9, 399 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    K. Deng, Y. Ding, Z. He, H. Zhao, J. Shi, Z. Liu, J. Appl. Phys. 105, 124909 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    H. Jia, M. Ke, R. Hao, Y. Ye, F. Liu, Z. Liu, Appl. Phys. Lett. 97, 173507 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    M. Farhat, S. Guenneau, S. Enoch, Phys. Rev. Lett. 103, 024301 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    H. Shen, M.P. Païdoussis, J. Wen, D. Yu, L. Cai, X. Wen, J. Phys. D: Appl. Phys. 45, 285401 (2012)CrossRefGoogle Scholar
  31. 31.
    H. Zhu, F. Semperlotti, AIP Adv. 3, 092121 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Xu, P. Peng, J. Appl. Phys. 117, 035103 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    H. Zhang, Z. Wei, X. Zhang, L. Fan, J. Qu, S. Zhang, Appl. Phys. Lett. 110, 173506 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    S.-Y. Zuo, Y. Tian, Q. Wei, Y. Cheng, X.-J. Liu, J. Appl. Phys. 123, 091704 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    F.Y. Ma, M. Huang, Y.C. Xu, J.H. Wu, Sci. Rep. 8, 5906 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    J. Mei, Y. Wu, New J. Phys. 16, 123007 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    A.K. Sarychev, R.C. McPhedran, V.M. Shalaev, Phys. Rev. B 62, 8531–8539 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    S.O.B.a.JB. Pendry, J. Phys. Condens. Matter. 14, 4035–4044 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    T. Koschny, P. Markoš, E.N. Economou, D.R. Smith, D.C. Vier, C.M. Soukoulis, Phys. Rev. B 71, 245105 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Wu, J. Li, Z.Q. Zhang, C.T. Chan, Phys. Rev. B 74, 085111 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    J.R. Willis, G.W. Milton, Proc. R. Soc. A 463, 855–880 (2007)Google Scholar
  42. 42.
    S. Yao, X. Zhou, G. Hu, New J. Phys. 10, 043020 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    H.H. Huang, C.T. Sun, New J. Phys. 11, 013003 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    R.V. Craster, J. Kaplunov, A.V. Pichugin, Proc. R. Soc. A 466, 2341–2362 (2010)CrossRefGoogle Scholar
  45. 45.
    T. Antonakakis, R.V. Craster, S. Guenneau, Proc. Math. Phys. Eng. Sci. 469, 20120533 (2013)CrossRefGoogle Scholar
  46. 46.
    M. Yang, G. Ma, Y. Wu, Z. Yang, P. Sheng, Phys. Rev. B 89, 064309 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical Engineering, State Key Laboratory for Strength and Vibration of Mechanical StructuresXi’an Jiaotong UniversityXi’anChina

Personalised recommendations