Advertisement

Applied Physics A

, 124:858 | Cite as

Investigation of thermal and electrical properties of As–Se glasses modified with Cu using DSC and AC impedance spectroscopy

  • M. V. Šiljegović
  • S. R. Lukić Petrović
  • D. L. Sekulić
  • G. R. Štrbac
  • F. Skuban
  • O. Bošák
  • D. M. Petrović
Article
  • 51 Downloads

Abstract

Investigations of thermal properties of CuxAs50Se50 − x chalcogenides were carried out using a differential scanning calorimeter. It was established that copper introduction significantly affects the complexity of structural network. This was indicated by double-stage crystallization process in the compound Cu15As50Se35. Besides α relaxation, all the glasses during heating show β relaxation. The complexity of the network influences the conductivity values and transport properties in a way of higher DC and AC conductivity for the compound with the highest Cu share. Impedance spectra show two semicircles, indicating the existence of two polarization processes in different frequency ranges. The presence of kinetic and as well as diffusion processes in polarization of the samples with x = 10 and 15 at% of Cu strongly affects the unusually high values of the real part of dielectric permittivity in low- and medium-frequency range.

Notes

Acknowledgements

Authors acknowledge the financial support of the Ministry of Science, Education and Technological Development of the Republic of Serbia within the projects ON 171022 and DS-2016-0038 and the financial support of the Provincial Secretariat for Higher Education and Scientific Research, Autonomous Province of Vojvodina, within the project No. 142-451-2362/2018-01.

References

  1. 1.
    Y. Vlasov, Y. Ermolenko, A. Legin, Y. Murzina, Multisensor systems for the analysis of industrial solutions. J. Anal. Chem. USSR 54, 476–482 (1999)Google Scholar
  2. 2.
    K. Ramesh. S. Asokan. K.S. Sangunni. E.S.R. Gopal, Electrical switching in germanium telluride glasses doped with Cu and Ag. Appl. Phys. A 69, 421–425 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    A. Zakery, S. Elliott, Optical properties and applications of chalcogenide glasses: a review. J. Non Cryst. Solids 330, 1–12 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    M.M. Hafiz, M.M. Ibrahim, M. Dongal, Effect of composition on the structure and electrical properties of As–Se–Cu glasses. J. Appl. Phys. 54, 1950 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    J. Hautala, P.C. Taylor, A review of optical properties of metal chalcogenide glasses. J. Non Cryst. Solids 141, 24–34 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    M. Mitkova, Y. Wang, P. Boolchand, Dual chemical role of Ag as an additive in chalcogenide glasses. Phys. Rev. Lett. 83, 3848–3851 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    E. Mytilineou, Chalcogenide amorphous semiconductors: chemical modification or doping? J. Optoelectron. Adv. Mater. 4, 705–710 (2002)Google Scholar
  8. 8.
    S.R. Lukić, D.M. Petrović, D.D. Štrbac, V.B. Petrović, F. Skuban, Dependence of thermal stability and thermomechanical characteristics of non-crystalline chalcogenides in the Cu–As–Se system on copper content. J. Therm. Anal. Calorim. 82, 41–44 (2005)CrossRefGoogle Scholar
  9. 9.
    A.S. Bondarenko, G. Ragoisha, EIS spectrum analyser, http://www.abc.chemistry.bsu.by. Accessed 01 Jan 2018
  10. 10.
    H.-B. Yu, W.-H. Wang, K. Samwer, The β relaxation in metallic glasses: an overview. Mater. Today 5, 183–191 (2013)CrossRefGoogle Scholar
  11. 11.
    G.P. Johari, M. Goldstein,, Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J. Chem. Phys. 53, 2372–2388 (1970)ADSCrossRefGoogle Scholar
  12. 12.
    J.D. Stevenson, P.G. Wolynes, A universal origin for secondary relaxations in supercooled liquids and structural glasses. Nat. Phys. 6, 62–68 (2010)CrossRefGoogle Scholar
  13. 13.
    J.Z. Liu, P.C. Taylor, The formal valence shell model for structure of amorphous semiconductors. J. Non-Cryst. Solids 114, 25–30 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    M. Böhm, O. Madelung, G. Huber, A. MacKinnon, A. Scharmann, E.G. Scharmer, Physics of ternary compounds (Springer, Berlin, 1985)Google Scholar
  15. 15.
    S.R. Lukić, D.M. Petrović, Thermal analysis and X-ray diffraction investigation of the copper (I) selenoarsenate (Cu3AsSe4). J. Opt. Adv. Mater. 1, 43–48 (1999)Google Scholar
  16. 16.
    M.V. Šiljegović, D.L. Sekulić, S.R. Lukić Petrović, D.M. Petrović, Correlation between the microstructure and electrical properties of Bi–As2S3 quasibinar chalcogenides by using AC impedance spectroscopy. J. Mater. Sci. Mater. Electron. 27, 1655–1661 (2016)CrossRefGoogle Scholar
  17. 17.
    M. A.Ravagli.C. Naftaly.E. Craig.D.W. Weatherby, Hewak DW, Dielectric and structural characterisation of chalcogenide glasses via terahertz time-domain spectroscopy. Opt. Mater. 69, 339–343 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    M. Kitao, H. Akao, T. Ishikawa, S. Yamada, Influence of copper addition on electrical and optical properties of amorphous As2Se3. Phys. Stat.Sol. 64a, 493–498 (1981)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Sawan, M. El-Gabaly, A. Katrib, M. Abu-Zeid, Electronic band structure in the ternary system As–Se–Cu. J. Non Cryst. Sol. 59&60, 1027–1030 (1983)ADSCrossRefGoogle Scholar
  20. 20.
    J. Hautala, B. Moosman, P.C. Taylor, Potential p-type doping in amorphous chalcogenide films. J. Non Cryst. Sol. 137–138, 1043–1043 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    M.A. Afifi. H.H.Labib. M.H.El-Fazary. M.Fadel. Electrical and thermal properties of chalcogenide glass system Se75Ge25 − xSbx, Appl. Phys. A, 55, 167–169 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Giuntini, P. Belougne, B. Deroide, J.V. Zanchetta, Numerical approach of the correlated barrier hopping model, Solid State Commun. 62, 739–742 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    E. Barsoukov, J.R. Macdonald, Impedance spectroscopy—theory, experiment and applications (Wiley, New Jersey, 2005)CrossRefGoogle Scholar
  24. 24.
    K.O. Čajko, D.L. Sekulić, S.R. Lukić–Petrović, M.V. Šiljegović, D.M. Petrović, Temperature-dependent electrical properties and impedance response of amorphous Agx(As40S30Se30)100− x chalcogenide glasses. Mater. Sci. Mater. Electron. 28, 120–128 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Younas, M. Nadeem, M. Atif, R. Grossinger, Metal-semiconductor transition in NiFe2O4 nanoparticles due to reverse cationic distribution by impedance spectroscopy. J. Appl. Phys. 109, 093704 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    J. Drechsel, B. Mannig, D. Gebeyehu, M. Pfeiffer, K. Leo, H. Hoppe, MIP-type organic solar cells incorporating phthalocyanine/fullerene mixed layers and doped wide-gap transport layers. Org. Electron. 5, 175–186 (2004)CrossRefGoogle Scholar
  27. 27.
    E.J. Abram, D.C. Sinclair, A.R. West, A strategy for analysis and modelling of impedance spectroscopy data of electroceramics: doped lanthanum gallate. J. Electroceramics 10, 165–177 (2003)CrossRefGoogle Scholar
  28. 28.
    F.D. Morrison, D.J. Jung, J.F. Scott, Constant-phase-element (CPE) modeling of ferroelectric random-access memory lead zirconate-titanate (PZT) capacitors. J. Appl. Phys. 101, 094112 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    R. Martinez, A. Kumar, R. Palai, J.F. Scott, R.S. Katiyar, Impedance spectroscopy analysis of Ba0.7Sr03TiO3/La0.7Sr0.3MnO3 heterostructure, J. Phys. D Appl. Phys. 44, 105302 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    A.S. Bondarenko, G. Ragoisha, EIS spectrum analyser help, http://www.abc.chemistry.bsu.by/vi/analyser/parameters.html. Accessed 08 Nov 2018
  31. 31.
    F.S. Husairi, J. Rouhi, K.A. Eswar, A.Z. Zainurul, M. Rusop, S. Abdullahr, Electrochemical impedance spectroscopy analysis of porous silicon prepared by photo-electrochemical etching: current density effect. Appl. Phys. A 116, 2119–2124 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    P. Dhak, D. Dhak, M. Das, P. Pramanik, Dielectric and impedance spectroscopy study of Ba0.8Bi 2. 133Nb1.6Ta0.4O9 ferroelectric ceramics, prepared by chemical route, J. Mater. Sci. Mater. Electron. 22, 1750–1760 (2011)CrossRefGoogle Scholar
  33. 33.
    Y.J. Hsiao, Y.H. Chang, T.H. Fang, Dielectric relaxation properties of perovskite–pyrochlore biphase ceramics. Appl. Phys. Lett. 87, 142906 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. V. Šiljegović
    • 1
  • S. R. Lukić Petrović
    • 1
  • D. L. Sekulić
    • 2
  • G. R. Štrbac
    • 1
  • F. Skuban
    • 1
  • O. Bošák
    • 3
  • D. M. Petrović
    • 1
  1. 1.Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  3. 3.Faculty of Materials Science and TechnologySlovak University of Technology in BratislavaTrnavaSlovakia

Personalised recommendations