Advertisement

Applied Physics A

, 125:13 | Cite as

High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity

  • Yanjun Zhang
  • Yiqin Kuang
  • Zhidong Zhang
  • Yue Tang
  • Jianqiang Han
  • Ruibing Wang
  • Jiangong Cui
  • Yulong Hou
  • Wenyi Liu
Article
  • 39 Downloads

Abstract

A metal–insulator–metal (MIM) waveguide with tooth cavity-coupled ring splitting cavity is proposed. Transmission characteristics and refractive index sensitivity are investigated by using finite-element method. A Fano-like line is observed in the transmission spectrum, and it is caused by the coherent superposition of the narrow discrete and wide continuous states. A maximum sensitivity of 1200 nm/RIU is achieved based on the Fano resonance effect when the air in the MIM waveguide and cavity is replaced by an insulator with a different refractive index. In addition, the derived structures of the plasmonic system are studied, and multiple Fano-like resonances are observed in the transmission spectrum. The effects of the structural parameters of plasmonic system on the Fano resonance are also investigated.

Notes

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (Grant no. 61605177), the National Science Fund for Distinguished Young Scholars (Grant no. 61525107), the Fund for Shanxi “1331 Project” Key subjects construction (1331KSC), the Natural Science Research Foundation of Shanxi Province, China (Grant No. 201701D121065), and the Open Project Fund of Science and Technology on Electronic Test and Measurement Laboratory (Grant no. ZDSYSJ2015003).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3), 131–314 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Fang, M. Sun, Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl. 4, e294 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Bian, Q. Gong, Metallic nanowire-loaded plasmonic slot waveguide for highly confined light transport at telecom wavelength. IEEE J. Quantum Electron. 49(10), 870–876 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    F. Hu, H. Yi, Z. Zhou, Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt. Lett. 36(8), 1500–1502 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Fu, X. Hu, C. Lu et al., All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 12(11), 5784–5790 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Bian, Q. Gong, Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges. Laser Photonics Rev. 8(4), 549–561 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    C. Zhao, Y. Li, Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photonics J. 6(6), 1–8 (2014)CrossRefGoogle Scholar
  9. 9.
    Z.D. Zhang, H.Y. Wang, Z.Y. Zhang, Fano resonance in a gear-shaped nanocavity of the metal–insulator–metal waveguide. Plasmonics 8(2), 797–801 (2013)CrossRefGoogle Scholar
  10. 10.
    Z. Zhang, J. Wang, Y. Zhao et al., Numerical investigation of a branch-shaped filter based on metal-insulator-metal waveguide. Plasmonics 6(4), 773–778 (2011)CrossRefGoogle Scholar
  11. 11.
    J.H. Zhu, Q.J. Wang, P. Shum, X.G. Huang, A simple nanometeric plasmonic narrow-band filter structure based on metal–insulator–metal waveguide. IEEE Trans. Nanotechnol. 10(6), 1371–1376 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Y.Y. Xie, Y.X. Huang, W.L. Zhao et al., A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity. IEEE Photonics J. 7(2), 1–12 (2015)CrossRefGoogle Scholar
  13. 13.
    L. Tong, H. Wei, S. Zhang et al., Recent advances in plasmonic sensors. Sensors 14(5), 7959 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Chen, Z. Li, J. Li, Q.H. Gong, Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference. Opt. Express 19(10), 9976–9985 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    H. Lu, X. Liu, L. Wang, Y.K. Gong, D. Mao, Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 19(4), 2910–2915 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    S. Kinugasa, N. Ishikura, H. Ito et al., One-chip integration of optical correlator based on slow-light devices. Opt. Express 23(16), 20767 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    C. Wu, A.B. Khanikaev, G. Shvets, Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys. Rev. Lett. 106(10), 107403 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Z.W. Liao, Y.Z. Huang, X.Y. Wang, I.Y.Y. Chau, S.X. Wang, W.J. Wen, Near infrared properties of hybridized plasmonic rectangular split nanorings. Chin. Phys. Lett. 31(6), 067803 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    J.C. Wang, C. Song, J. Hang et al., Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration. Opt. Express 25(20), 23880–23892 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    C.P. Liang, G.Niu, X.F. Chen et al., Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance. Opt. Commun. (2018).  https://doi.org/10.1016/j.optcom.2018.11.083 CrossRefGoogle Scholar
  21. 21.
    W. Wang, A. Klots, Y. Yang et al., Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals. Appl. Phys. Lett. 106(18), 351 (2015)CrossRefGoogle Scholar
  22. 22.
    X. Zhou, L. Zhang, A.M. Armani et al., On-chip biological and chemical sensing with reversed Fano lineshape enabled by embedded microring resonators. IEEE J. Sel. Top. Quantum Electron. 20(3), 35–44 (2014)CrossRefGoogle Scholar
  23. 23.
    K. Wen, Y. Hu, L. Chen et al., Fano resonance with ultra-high figure of merits based on plasmonic metal–insulator–metal waveguide. Plasmonics 10(1), 27–32 (2015)CrossRefGoogle Scholar
  24. 24.
    K. Wen, Y. Hu, L. Chen et al., Fano resonance based on end-coupled cascaded-ring mim waveguides structure. Plasmonics 12(6), 1875–1880 (2017)CrossRefGoogle Scholar
  25. 25.
    Z. Zhang, L. Luo, C. Xue et al., Fano resonance based on metal–insulator–metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors 16(5), 642 (2016)CrossRefGoogle Scholar
  26. 26.
    R. Zafar, M. Salim, Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sens. J. 15(11), 6313–6317 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    C. Li, S. Li, Y. Wang et al., Multiple Fano resonances based on plasmonic resonator system with end-coupled cavities for high performance nanosensor. IEEE Photonics J. 9(6), 1–10 (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yanjun Zhang
    • 1
  • Yiqin Kuang
    • 1
  • Zhidong Zhang
    • 1
  • Yue Tang
    • 1
  • Jianqiang Han
    • 1
  • Ruibing Wang
    • 1
  • Jiangong Cui
    • 1
  • Yulong Hou
    • 1
  • Wenyi Liu
    • 1
  1. 1.Science and Technology on Electronic Test and Measurement LaboratoryNorth University of ChinaTaiyuanChina

Personalised recommendations