Advertisement

Applied Physics A

, 125:195 | Cite as

Mechanical, structural and scaling properties of coals: depth-sensing indentation studies

  • Elena L. KossovichEmail author
  • Feodor M. Borodich
  • Svetlana A. Epshtein
  • Boris A. Galanov
  • Maxim G. Minin
  • Vera A. Prosina
Invited paper
  • 53 Downloads

Abstract

This paper discusses special features of mechanical behaviour of coals discovered using depth-sensing indentation (DSI) techniques along with other traditional methods of material testing. Many of the special features are caused by the presence of multiscale complex heterogeneous internal structures within the samples and brittleness of some coal components. Experimental methodology for studying mechanical properties of coals and other natural extreme materials like bones is discussed. It is argued that values of microhardness of bituminous coals correlate strongly with the maximum load; therefore, the use of this parameter in application to coals may be meaningless. For analysis of the force-displacement curves obtained by DSI, both Oliver–Pharr and Galanov–Dub approaches are employed. It is argued that during nanoindentation, the integrity of the internal structure of a coal sample within a small area of high stress field near the tip of indenter may be destroyed. Hence, the standard approaches to mechanical testing of coals should be re-examined.

Notes

Acknowledgements

Research was supported by the Russian Science Foundation (Grant \(\#\) 16-17-10217).

References

  1. 1.
    R.C. Neavel, ACS Div. Fuel Chem. Prep. 24 1, 73 (1979)Google Scholar
  2. 2.
    M. Klawitter, J. Esterle, S. Collins, Int. J. Rock Mech. Min. Sci. 76, 237 (2015)CrossRefGoogle Scholar
  3. 3.
    P.B. Hirsch, Proc. R. Soc. A Math. Phys. Eng. Sci 226, 143 (1954)ADSGoogle Scholar
  4. 4.
    Z. Zhao, W. Wang, C. Dai, J. Yan, Trans. Nonferrous Met. Soc. Chin. 24, 1538 (2014)CrossRefGoogle Scholar
  5. 5.
    V.L. Shkuratnik, P.V. Nikolenko, A.E. Koshelev, J. Min. Sci. 52, 873 (2016)CrossRefGoogle Scholar
  6. 6.
    J. Pan, Z. Meng, Q. Hou, Y. Ju, Y. Cao, J. Struct. Geol. 54, 129 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    V.L. Shkuratnik, Y.L. Filimonov, S.V. Kuchurin, J. Min. Sci. 41, 44 (2005)CrossRefGoogle Scholar
  8. 8.
    V.L. Shkuratnik, Y.L. Filimonov, S.V. Kuchurin, J. Min. Sci. 42, 203 (2006)CrossRefGoogle Scholar
  9. 9.
    Y. Zhao, S. Liu, Y. Jiang, K. Wang, Y. Huang, Rock Mech. Rock Eng. 49, 1709 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Zhao, G.-F. Zhao, Y. Jiang, D. Elsworth, Y. Huang, Int. J. Coal Geol. 132, 81 (2014)CrossRefGoogle Scholar
  11. 11.
    R.D. West, G. Markevicius, V.M. Malhotra, S. Hofer, Fuel 98, 213 (2012)CrossRefGoogle Scholar
  12. 12.
    A.N. Korshunov, D.M. Dergunov, A.B. Logov, B.L. Gerike, Sov. Min. Sci. 11, 571 (1975)CrossRefGoogle Scholar
  13. 13.
    N.H. Macmillan, D.G. Rickerby, J. Mater. Sci. 14, 242 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    B. Das, Int. J. Rock Mech. Min. Sci. 9, 783 (1972)CrossRefGoogle Scholar
  15. 15.
    GOST 21206-75, in Coals and Anthracite. Determination Method for Microhardness and Microbrittleness (Standards publishing, Moscow, 1977)Google Scholar
  16. 16.
    V.L. Shkuratnik, Y.L. Filimonov, S.V. Kuchurin, J. Min. Sci. 40, 458 (2004)CrossRefGoogle Scholar
  17. 17.
    A. Morcote, G. Mavko, M. Prasad, Geophysics 75, E227 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    X. Liu, F. Dai, J. Liu, Comput. Model. New Technol. 18, 337 (2014)ADSGoogle Scholar
  19. 19.
    V.L. Shkuratnik, Y.L. Filimonov, S.V. Kuchurin, J. Appl. Mech. Tech. Phys. 47, 236 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    A.O. Vatulyan, E.L. Kossovich, D.K. Plotnikov, Mech. Solids 52, 429 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    J.G. Speight, The Chemistry and Technology of Coal, 3rd edn. (CRC Press, New York, 2013)Google Scholar
  22. 22.
    J. Chen, S.J. Bull, J. Phys. D. Appl. Phys. 44, 1 (2011)Google Scholar
  23. 23.
    J. Chen, M.A. Birch, S.J. Bull, J. Mater. Sci. Mater. Med. 21, 277 (2010)CrossRefGoogle Scholar
  24. 24.
    E. Atar, C. Sarioglu, U. Demirler, E. Sabri Kayali, H. Cimenoglu, Scr. Mater. 48, 1331 (2003)CrossRefGoogle Scholar
  25. 25.
    L.-N. Zhu, B.-S. Xu, H.-D. Wang, C.-B. Wang, Crit. Rev. Solid State Mater. Sci. 40, 77 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    M.M. Khrushchov, E.S. Berkovich, Devices PMT-2 and PMT-3 for Microhardness Testing (Izdatelstvo AN USSR, Moscow, 1950) (in Russian) Google Scholar
  27. 27.
    M.M. Khruschchov, E.S. Berkovich, Izv. AN SSSR. Otd. Tekh. Nauk 1950, 1645 (1950) (in Russian) Google Scholar
  28. 28.
    ASTM E384, in Standard Test Method for Microindentation Hardness of Materials (ASTM International, West Conshohocken, PA, 2016)Google Scholar
  29. 29.
    F.M. Borodich, S.J. Bull, S.A. Epshtein, J. Min. Sci. 51, 1062 (2015)CrossRefGoogle Scholar
  30. 30.
    S.A. Epshtein, F.M. Borodich, S.J. Bull, Appl. Phys. A Mater. Sci. Process. 119, 325 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    E.L. Kossovich, F.M. Borodich, S.J. Bull, S.A. Epshtein, Thin Solid Films 619, 112 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    A. Kounkov, GeoLines 22, 40 (2009)Google Scholar
  33. 33.
    E.L. Kossovich, N.N. Dobryakova, S.A. Epshtein, D.S. Belov, J. Min. Sci. 52, 906 (2016)CrossRefGoogle Scholar
  34. 34.
    E. Kossovich, S. Epshtein, N. Dobryakova, M. Minin, D. Gavrilova, in Phys. Math. Model. Process. Geomedia (IPMech RAS, Moscow, 2018), pp. 45–50Google Scholar
  35. 35.
    E.L. Kossovich, S.A. Epshtein, V.L. Shkuratnik, M.G. Minin, Gorn. Zhurnal 2017, 25 (2017)CrossRefGoogle Scholar
  36. 36.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)ADSCrossRefGoogle Scholar
  37. 37.
    B.A. Galanov, S.N. Dub, J. Superhard Mater. 39, 373 (2017)CrossRefGoogle Scholar
  38. 38.
    G.N. Kalei, Mashinovedenie 4, 105 (1968). (in Russian)Google Scholar
  39. 39.
    F.M. Borodich, L.M. Keer, Int. J. Solids Struct. 41, 2479 (2004)CrossRefGoogle Scholar
  40. 40.
    F.M. Borodich, Adv. Appl. Mech. 47, 225 (2014)CrossRefGoogle Scholar
  41. 41.
    M.M. Chaudhri, J. Appl. Phys. 124, 095107 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    S.I. Bulychev, V.P. Alekhin, M.K. Shorshorov, A.P. Ternovskij, G.D. Shnyrev, Zavod. Lab. 41, 1137 (1975)Google Scholar
  43. 43.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    B.A. Galanov, O.N. Grigorev, Y.V. Milman, I.P. Ragozin, Strength Mater. 15, 1624 (1983)CrossRefGoogle Scholar
  45. 45.
    B.A. Galanov, O.N. Grigorev, Y.V. Milman, I.P. Ragozin, V.I. Trefilov, Dokl. Sov. Phys. 29, 146 (1984)Google Scholar
  46. 46.
    R.Y. Lo, D.B. Bogy, J. Mater. Res. 14, 2276 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    J.C. Hay, A. Bolshakov, G.M. Pharr, J. Mater. Res. 14, 2296 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    S. Veprek, S. Mukherjee, H.D. Mnnling, J. He, Mater. Sci. Eng. A 340, 292 (2003)CrossRefGoogle Scholar
  49. 49.
    Y.P. Cao, M. Dao, J. Lu, J. Mater. Res. 22, 1255 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    M.G.J. Veprek-Heijman, R.G. Veprek, A.S. Argon, D.M. Parks, S. Veprek, Surf. Coatings Technol. 203, 3385 (2009)CrossRefGoogle Scholar
  51. 51.
    J. Hay, P. Agee, E. Herbert, Exp. Tech. 34, 86 (2010)CrossRefGoogle Scholar
  52. 52.
    F.M. Borodich, B.A. Galanov, L.M. Keer, M.M. Suarez-Alvarez, Mech. Mater. 75, 34 (2014)CrossRefGoogle Scholar
  53. 53.
    B. A. Galanov, Y. V Milman, S. I. Chugunova, I. V Goncharova, J. Superhard Mater. 1999, 25 (1999)Google Scholar
  54. 54.
    L.A. Galin, Contact Problems (Springer, Dordrecht, 2008)zbMATHGoogle Scholar
  55. 55.
    A.N. Tikhonov, V.Y. Arsenin, Methods of Solving Ill-Posed Problems (Nauka, Moscow, 1979). (in Russian)zbMATHGoogle Scholar
  56. 56.
    F.R. Gantmakher, The Theory of Matrices (Chelsea Pub. Co., New York, 1960)Google Scholar
  57. 57.
    V.V. Voevodin, Linear Algebra (Nauka, Moscow, 1974). (in Russian)zbMATHGoogle Scholar
  58. 58.
    I.I. Argatov, F.M. Borodich, S.A. Epshtein, E.L. Kossovich, Mech. Mater. 114, 172 (2017)CrossRefGoogle Scholar
  59. 59.
    J.D. Currey, Bones: Structure and Mechanics (Princeton University Press, Princeton, 2002)Google Scholar
  60. 60.
    J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Med. Eng. Phys. 20, 92 (1998)CrossRefGoogle Scholar
  61. 61.
    D. Carnelli, P. Vena, M. Dao, C. Ortiz, R. Contro, J. R. Soc. Interface 10, 20120953 (2013)CrossRefGoogle Scholar
  62. 62.
    D. Carnelli, R. Lucchini, M. Ponzoni, R. Contro, P. Vena, J. Biomech. 44, 1852 (2011)CrossRefGoogle Scholar
  63. 63.
    M. Taffetani, M. Griebel, D. Gastaldi, S.M.M. Klisch, P. Vena, J. Mech. Behav. Biomed. Mater. 32, 17 (2014)CrossRefGoogle Scholar
  64. 64.
    J. Menčík, D. Munz, E. Quandt, E.R. Weppelmann, M.V. Swain, J. Mater. Res. 12, 2475 (1997)ADSCrossRefGoogle Scholar
  65. 65.
    J. Devore, in Probability and Statistics for Engineering and the Sciences (Brooks/Cole, Boston, 2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Elena L. Kossovich
    • 1
    Email author
  • Feodor M. Borodich
    • 2
  • Svetlana A. Epshtein
    • 1
  • Boris A. Galanov
    • 3
  • Maxim G. Minin
    • 4
  • Vera A. Prosina
    • 1
  1. 1.National University of Science and Technology ’MISiS’ 4MoscowRussian Federation
  2. 2.School of EngineeringCardiff UniversityCardiffUK
  3. 3.Frantsevich Institute of Materials Science ProblemsNational Academy of Sciences of UkraineKievUkraine
  4. 4.Ural Federal University named after the first President of Russia B.N.YeltsinEkaterinburgRussian Federation

Personalised recommendations