Advertisement

Applied Physics A

, 124:848 | Cite as

Ultra-thin-film transistors based on ultra-thin amorphous ZnSnO films

  • Shilu Yue
  • Jianguo Lu
  • Rongkai Lu
  • Siqin Li
  • Bojing Lu
  • Xifeng Li
  • Jianhua Zhang
  • Yu-Jia Zeng
  • Zhizhen Ye
Article
  • 105 Downloads

Abstract

Ultra-thin amorphous ZnSnO (a-ZTO) films were deposited by pulsed laser deposition at room temperature and annealed at various temperatures for ultra-thin-film transistors (UTFTs). The thicknesses of the ultra-thin a-ZTO films are approximately 3.1 nm. The electrical resistivity of the nanofilms decreases greatly with the annealing temperature initially increasing. All the UTFTs with annealing temperature ranging from 250 to 450 °C exhibit good switching properties operating in the enhancement mode with the field-effect mobility of above 8.2 cm2 V−1 s−1. The annealing treatment exhibits extreme importance for the UTFTs to obtain better performance as oxygen vacancy is controlled easily in the ultra-thin films by annealing. The 350 °C-annealed a-ZTO UTFT depicts the largest field-effect mobility of 20.9 cm2 V−1 s−1, the minimum threshold voltage of 2.3 V, the minimum subthreshold swing of 0.339 V/decade, the minimum density of the interfacial trap states of 1.02 × 1012 cm−2 and a large on/off current ratio of 3.3 × 107. Besides, the UTFT with the annealing temperature of 450 °C depicts excellent long-term stability under bias stress due to the least oxygen vacancies. The observations will offer basic design guideline for improvement and future applications of UTFTs.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant no. 51741209 and Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices under Grant no. KFJJ201605.

Supplementary material

339_2018_2280_MOESM1_ESM.pdf (566 kb)
Supplementary material 1 (PDF 566 KB)

References

  1. 1.
    E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24, 2945 (2012)CrossRefGoogle Scholar
  2. 2.
    L. Petti, N. Munzenrieder, C. Vogt, H. Faber, L. Buthe, G. Cantarella, F. Bottacchi, T.D. Anthopoulos, G. Troster, Appl. Phys. Rev. 3, 021303 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    T. Kamiya, K. Nomura, H. Hosono, Sci. Technol. Adv. Mater. 11, 044305 (2010)CrossRefGoogle Scholar
  5. 5.
    W.C. Yan, S.L. Yue, J.G. Lu, X.F. Li, G.Y. Yu, R.K. Lu, Y.Y. Zeng, L.X. Chen, Z.Z. Ye, IEEE Trans. Electron Devices 63, 2412 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Q.J. Jiang, L.S. Feng, C.J. Wu, R.J. Sun, X.F. Li, B. Lu, Z.Z. Ye, J.G. Lu, Appl. Phys. Lett. 106, 053503 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Q.J. Jiang, C.J. Wu, L.S. Feng, G.Y. Yu, L. Gong, Z.Z. Ye, J.G. Lu, RSC Adv. 5, 56116 (2015)CrossRefGoogle Scholar
  8. 8.
    Z.W. Zheng, Y.C. Chen, Appl. Phys. A Mater. Sci. Process. 115, 937 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    J. Li, C.X. Huang, W.Q. Zhu, J.H. Zhang, X.Y. Jiang, Z.L. Zhang, X.F. Li, Appl. Phys. A Mater. Sci. Process. 122, 909 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Z.Z. Ye, S.L. Yue, J. Zhang, X.F. Li, L.X. Chen, J.G. Lu, IEEE Trans. Electron Devices 63, 3547 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    L.S. Feng, G.Y. Yu, X.F. Li, J.H. Zhang, Z.Z. Ye, J.G. Lu, IEEE Trans. Electron Devices 64, 206 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, D.A. Keszler, Appl. Phys. Lett. 86, 013503 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Q.J. Jiang, J.G. Lu, J.P. Cheng, X.F. Li, R.J. Sun, L.S. Feng, W. Dai, W.C. Yan, Z.Z. Ye, Appl. Phys. Lett. 105, 132105 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Part 1 Regul. Pap. Jpn. J. Appl. Phys. Brief Commun. Rev. Pap. 45, 4303 (2006)CrossRefGoogle Scholar
  15. 15.
    C.J. Wu, X.F. Li, J.G. Lu, Z.Z. Ye, J. Zhang, T.T. Zhou, R.J. Sun, L.X. Chen, B. Lu, X.H. Pan, Appl. Phys. Lett. 103, 082109 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    D.H. Cho, S. Yang, C. Byun, J. Shin, M.K. Ryu, S.H.K. Park, C.S. Hwang, S.M. Chung, W.S. Cheong, S.M. Yoon, H.Y. Chu, Appl. Phys. Lett. 93, 142111 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    J. Zhang, J.G. Lu, Q.J. Jiang, B. Lu, X.H. Pan, L.X. Chen, Z.Z. Ye, X.F. Li, P.J. Guo, N.J. Zhou, J. Vac. Sci. Technol. B 32, 010602 (2014)CrossRefGoogle Scholar
  18. 18.
    E. Chong, Y.S. Chun, S.Y. Lee, Appl. Phys. Lett. 97, 102102 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    E. Chong, K.C. Jo, S.Y. Lee, Appl. Phys. Lett. 96, 152102 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    J.S. Park, K. Kim, Y.G. Park, Y.G. Mo, H.D. Kim, J.K. Jeong, Adv. Mater. 21, 329 (2009)CrossRefGoogle Scholar
  21. 21.
    S.L. Yue, J.G. Lu, R.K. Lu, S.Q. Li, X.F. Li, J.H. Zhang, L.X. Chen, Z.Z. Ye, Appl. Phys. Lett. 113, 013504 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Y.S. Rim, D.L. Kim, W.H. Jeong, H.J. Kim, Appl. Phys. Lett. 97, 233502 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    K.H. Ji, J.I. Kim, H.Y. Jung, S.Y. Park, R. Choi, U.K. Kim, C.S. Hwang, D. Lee, H. Hwang, J.K. Jeong, Appl. Phys. Lett. 98, 103509 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    B.S. Yang, S. Park, S. Oh, Y.J. Kim, J.K. Jeong, C.S. Hwang, H.J. Kim, J. Mater. Chem. 22, 10994 (2012)CrossRefGoogle Scholar
  25. 25.
    P. Wu, J. Zhang, J.G. Lu, X.F. Li, C.J. Wu, R.J. Sun, L.S. Feng, Q.J. Jiang, B. Lu, X.H. Pan, Z.Z. Ye, IEEE Trans. Electron Devices 61, 1431 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    E. Paparazzo, J. Electron Spectrosc. Relat. Phenom. 43, 97 (1987)CrossRefGoogle Scholar
  27. 27.
    K.J. Saji, K. Tian, M. Snure, A. Tiwari, Adv. Electron. Mater. 2, 1500453 (2016)CrossRefGoogle Scholar
  28. 28.
    N. On, Y. Kang, A. Song, B. Du Ahn, H.D. Kim, J.H. Lim, K.B. Chung, S. Han, J.K. Jeong, IEEE Trans. Electron Devices 64, 4965 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    A. Tari, W.S. Wong, Appl. Phys. Lett. 112, 073506 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    J. Zhang, X.F. Li, J.G. Lu, N.J. Zhou, P.J. Guo, B. Lu, X.H. Pan, L. Chen, Z.Z. Ye, RSC Adv. 4, 3145 (2014)CrossRefGoogle Scholar
  31. 31.
    K. Nomura, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Lett. 95, 013502 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Y.J. Zeng, Z.Z. Ye, Y.F. Lu, J.G. Lu, L. Sun, W.Z. Xu, L.P. Zhu, B.H. Zhao, Y. Che, Appl. Phys. Lett. 90, 012111 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Silicon Materials, School of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.Key Laboratory of Advanced Display and System Application, Ministry of EducationShanghai UniversityShanghaiChina
  4. 4.Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations