Applied Physics A

, 124:851 | Cite as

Optimization of highly efficient GaAs–silicon hybrid solar cell

  • Aimal Daud Khan
  • Adnan Daud KhanEmail author


Optimizing the physical and chemical properties of each material in the solar cell is an efficient way to improve their performance. In the present work, we propose a double layer absorber made of high and low bandgap materials such as gallium arsenide (GaAs) and silicon (Si) along with the window layer made of zinc oxide (ZnO) and buffer layer made of cadmium sulfide (CdS) material. The solar cell structure is numerically optimized for several parameters like thickness of different layers, doping concentration, and operating temperature. Results showed that the open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and efficiency (ƞ) are greatly improved against respective changes in the performance parameters. Eventually, a comparison has been made with previously reported solar cells, which proves that our suggested model exhibit high values of Voc = 0.776 V, Jsc = 38.46 mA/cm2, FF = 85.49%, and ƞ = 25.53%, respectively, with almost flat and near unity response for quantum efficiency. This indicates that the proposed design shows promise as a feasible choice for replacing less efficient conventional solar cells.


  1. 1.
    K. Yoshikawa et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy 2(5), 17032 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    S. Zhu et al., Transparent electrode for monolithic perovskite/silicon-heterojunction two-terminal tandem solar cells. Nano Energy 45, 280–286 (2018)CrossRefGoogle Scholar
  3. 3.
    J. Werner et al., Efficient monolithic perovskite/silicon tandem solar cell with cell area> 1 cm2. J. Phys. Chem. Lett. 7(1), 161–166 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Jiang et al., High efficiency multi-crystalline silicon solar cell with inverted pyramid nanostructure. Sol. Energy 142, 91–96 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    C.D. Bailie et al., Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ. Sci. 8(3), 956–963 (2015)CrossRefGoogle Scholar
  6. 6.
    C.-H. Chiang, C.-G. Wu, Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nat. Photonics 10(3), 196 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    N. Gasparini et al., Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%. Nat. Energy 1(9), 16118 (2016)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    C.T. Trinh et al., Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%. Sol. Energy Mater. Sol. Cells 174, 187–195 (2018)CrossRefGoogle Scholar
  9. 9.
    K.A. Bush et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2(4), 17009 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    N. Chuchvaga et al., Study and optimization of heterojunction silicon solar cells. J. Phys. Conf. Ser. 993(1), 012039 (2018)CrossRefGoogle Scholar
  11. 11.
    G. Kaur, A. Mitra, K. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications. Prog. Natural Sci. Mater. Int. 25(1), 12–21 (2015)CrossRefGoogle Scholar
  12. 12.
    B. von Roedern, How do buffer layers affect solar cell performance and solar cell stability? MRS Online Proc Library Arch 668 (2001)Google Scholar
  13. 13.
    C. Schwartz et al., Electronic structure study of the CdS buffer layer in CIGS solar cells by X-ray absorption spectroscopy: Experiment and theory. Sol. Energy Mater. Sol. Cells 149, 275–283 (2016)CrossRefGoogle Scholar
  14. 14.
    K. Bertness et al., 29.5%-efficient GaInP/GaAs tandem solar cells. Appl. Phys. Lett. 65(8), 989–991 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    K. Chopra, P. Paulson, V. Dutta, Thin-film solar cells: an overview. Prog. Photovolt. Res. Appl. 12(2-3), 69–92 (2004)CrossRefGoogle Scholar
  16. 16.
    H. Heriche, Z. Rouabah, N. Bouarissa, High-efficiency CIGS solar cells with optimization of layers thickness and doping. Optik-Int. J. Light Electron Opt. 127(24), 11751–11757 (2016)CrossRefGoogle Scholar
  17. 17.
    H. Heriche, Z. Rouabah, N. Bouarissa, New ultra thin CIGS structure solar cells using SCAPS simulation program. Int. J. Hydrogen Energy 42(15), 9524–9532 (2017)CrossRefGoogle Scholar
  18. 18.
    M.S. Shur, Handbook series on semiconductor parameters. Vol. 1. 1996: World ScientificGoogle Scholar
  19. 19.
    E.H. Nicollian, J.R. Brews, E.H. Nicollian, MOS (metal oxide semiconductor) physics and technology (1982: Wiley, New York et al, 1987)Google Scholar
  20. 20.
    Y. Liu, Y. Sun, A. Rockett, A new simulation software of solar cells—wxAMPS. Sol. Energy Mater. Sol. Cells 98, 124–128 (2012)CrossRefGoogle Scholar
  21. 21.
    M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    J. Pala et al., Analysis and design optimization of organic dye sensitized solar cell based on simulation. AIP Conf. Proc. 1837(1):030004 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    R. Stangl, C. Leendertz, J. Haschke, Numerical simulation of solar cells and solar cell characterization methods: the open-source on demand program AFORS-HET. In: Solar Energy. 2010, InTechGoogle Scholar
  24. 24.
    S. Degrave, M. Burgelman, P. Nollet. Modelling of polycrystalline thin film solar cells: new features in scaps version 2.3. In: Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on. 2003 1, 487–490 (2003) IEEEGoogle Scholar
  25. 25.
    H. Movla, Optimization of the CIGS based thin film solar cells: Numerical simulation and analysis. Optik-Int. J. Light Electron Opt. 125(1), 67–70 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Burgelman et al., Modeling thin-film PV devices. Prog. Photovolt. Res. Appl. 12(2-3), 143–153 (2004)CrossRefGoogle Scholar
  27. 27.
    M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    P. Chelvanathan, M.I. Hossain, N. Amin, Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Curr. Appl. Phys. 10(3), S387–S391 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    A.D. Khan, J. Iqbal, S. ur Rehman, Polarization-sensitive perfect plasmonic absorber for thin-film solar cell application. Appl. Phys. A 124(9), 610 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    A.D. Khan et al., Light absorption enhancement in tri-layered composite metasurface absorber for solar cell applications. Opt. Mater. 84, 195–198 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    M. Penny, T. Farrell, G. Will, A mathematical model for the anodic half cell of a dye-sensitised solar cell. Sol. Energy Mater. Sol. Cells 92(1), 24–37 (2008)CrossRefGoogle Scholar
  32. 32.
    X. Miao et al., High efficiency graphene solar cells by chemical doping. Nano Lett. 12(6), 2745–2750 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    T. Nakada, M. Mizutani, 18% efficiency Cd-free Cu (In, Ga) Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Jpn. J. Appl. Phys. 41(2B), L165 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    C.S. Solanki, Solar photovoltaics: fundamentals, technologies and applications. PHI Learning Pvt. Ltd (2015)Google Scholar
  35. 35.
    D. Braunger et al., An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer. Sol. Energy Mater. Sol. Cells 40(2), 97–102 (1996)CrossRefGoogle Scholar
  36. 36.
    N. Amin et al., Numerical modelling of ultra thin Cu (In, Ga) Se2 solar cells. Energy Proc. 15, 291–298 (2012)CrossRefGoogle Scholar
  37. 37.
    S. Komilian, O. Oklobia, T. Sadat-Shafai, Controlling intercalations of PBDTTT-EFT side chain to initiate suitable network for charge extraction in PBDTTT-EFT: pc 71 BM blended bulk heterojunction solar cell. Sol. Energy Mater. Sol. Cells 175, 35–40 (2018)CrossRefGoogle Scholar
  38. 38.
    K. Qiu et al., Power-loss analysis of a dopant-free ZnS/p-Si heterojunction solar cell with WO 3 as hole-selective contact. Sol. Energy 165, 35–42 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Takano, K. Oyaizu, Fabrication of SnS-MgSnO heterojunction solar cells using vacuum thermal evaporation and sol-gel method. Materials Letters, 2018Google Scholar
  40. 40.
    J. Zheng et al., 21.8% efficient monolithic perovskite/homo-junction-silicon tandem solar cell on 16 cm2. ACS Energy Letters 3(9), 2299–2300 (2018)CrossRefGoogle Scholar
  41. 41.
    J.-H. Wi et al., Spectral response of CuGaSe 2/Cu (In, Ga) Se 2 Monolithic tandem solar cell with open-circuit voltage over 1 V. IEEE J. Photovolt. 8(3), 840–848 (2018)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sarhad University of Science and Information TechnologyPeshawarPakistan
  2. 2.US-Pakistan Center for Advanced Studies in EnergyUniversity of Engineering and TechnologyPeshawarPakistan

Personalised recommendations