Applied Physics A

, 124:855 | Cite as

Structural, morphological and electrochemical properties of long alkoxy-functionalized polythiophene and TiO2 nanocomposites

  • Yueqin LiEmail author
  • Minya Zhou
  • Yun Li
  • Qiang Gong
  • Yiting Wang
  • Zongbiao Xia


High performance alkoxy-functionalized polythiophene (PM4EOT) and TiO2 nanocomposites were prepared via a facile in situ oxidative chemical polymerization of thiophene monomer. The morphology studied demonstrated that nanocomposites were of the core–shell structure with a particle size of approximately 30 nm and PM4EOT shell was of about 2–10 nm thickness. X-ray photoelectron spectroscopy (XPS) spectra proved that there was a new Ti–S interaction between the polymer and TiO2 surface. The supercapacitive behaviors of the nanocomposites investigated by cyclic voltammetry galvanostatic charge–discharge and AC impedance measurements demonstrated that the prepared PM4EOT/TiO2 nanocomposite [1:1 (weight ratio)] exhibits enhanced specific capacitance and cycling stability as compared to the two pristine components and various ratio contents. The specific capacitance of PM4EOT/TiO2 nanocomposite (1:1) was obtained up to 111 F/g at a current density of 0.5 A/g, which is much higher than that of the pure PM4EOT (45 F/g) and TiO2 (1.6 F/g). In addition, the energy density of 15.4 Wh kg−1 and the power density of 308 W kg−1 delivered by composite (1:1) capacitor were achieved at a current density of 0.5 A/g.



This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJB150021), the National Natural Science Foundation of China (Grant No. 51303084) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors gratefully acknowledge the facilities from Jiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest Biomass.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

339_2018_2277_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 (DOCX 3438 KB)


  1. 1.
    G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1–12 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    R.B. Ambade, S.B. Ambade, N.K. Shrestha, Y.-C. Nah, S.-H. Han, W. Lee, S.-H. Lee, Chem. Commun. 49, 2308–2310 (2013)CrossRefGoogle Scholar
  3. 3.
    B.K. Kuila, B. Nandan, M. Bohme, A. Janke, M. Stamm, Chem. Commun. 5749–5751 (2009)Google Scholar
  4. 4.
    R.B. Ambade, S.B. Ambade, N.K. Shrestha, R.R. Salunkhe, W. Lee, S.S. Bagde, J.H. Kim, F.J. Stadler, Y. Yamauchi, S.-H. Lee, J. Mater. Chem. A 5, 172–180 (2017)CrossRefGoogle Scholar
  5. 5.
    Q. Meng, K. Cai, Y. Chen, L. Chen, Nano Energy 36, 268–285 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Li, Y. Zhang, L. Yang, Y. Liu, J. Ma, J. Mater. Sci. Mater. Electron. 26, 485–492 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Heydari, M.B. Gholivand, J. Mater. Sci. Mater. Electron. 28, 3607–3615 (2017)CrossRefGoogle Scholar
  8. 8.
    M.R. McCullough, Adv. Mater. 10, 93–116 (1998)CrossRefGoogle Scholar
  9. 9.
    A. Laforgue, P. Simon, C. Sarrazin, J.-F. Fauvarque, J. Power Sources 80, 142–148 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    A.M. Österholm, D.E. Shen, A.L. Dyer, J.R. Reynolds, ACS Appl. Mater. Interfaces 5, 13432–13440 (2013)CrossRefGoogle Scholar
  11. 11.
    B. Senthilkumar, P. Thenamirtham, R. Kalai Selvan, Appl. Surf. Sci. 257, 9063–9067 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    K. Sun, S. Zhang, P. Li, Y. Xia, X. Zhang, D. Du, F.H. Isikgor, J. Ouyang, J. Mater. Sci. Mater. Electron. 26, 4438–4462 (2015)CrossRefGoogle Scholar
  13. 13.
    A. Alabadi, S. Razzaque, Z. Dong, W. Wang, B. Tan, J. Power Sources 306, 241–247 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    C. Fu, H. Zhou, R. Liu, Z. Huang, J. Chen, Y. Kuang, Mater. Chem. Phys. 132, 596–600 (2012)CrossRefGoogle Scholar
  15. 15.
    H. Zhang, Z. Hu, M. Li, L. Hu, S. Jiao, J. Mater. Chem. A 2, 17024–17030 (2014)CrossRefGoogle Scholar
  16. 16.
    P. Sivaraman, A.R. Bhattacharrya, S.P. Mishra, A.P. Thakur, K. Shashidhara, A.B. Samui, Electrochim. Acta 94, 182–191 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, S. Tao, Y. An, S. Wu, C. Meng, J. Mater. Chem. A 1, 8876–8887 (2013)CrossRefGoogle Scholar
  18. 18.
    E. Hür, G.A. Varol, A. Arslan, Synth. Met. 184, 16–22 (2013)CrossRefGoogle Scholar
  19. 19.
    M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364–5457 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Zhu, S. Xu, L. Jiang, K. Pan, Y. Dan, React. Funct. Polym. 68, 1492–1498 (2008)CrossRefGoogle Scholar
  21. 21.
    A.K. Thakur, R.B. Choudhary, Synth. Met. 220, 25–33 (2016)CrossRefGoogle Scholar
  22. 22.
    A.K. Thakur, R.B. Choudhary, M. Majumder, M. Majhi, Ionics 24, 257–268 (2018)CrossRefGoogle Scholar
  23. 23.
    D. Wang, Q. Ye, B. Yu, F. Zhou, J. Mater. Chem. 20, 6910–6915 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Uygun, O. Turkoglu, S. Sen, E. Ersoy, A.G. Yavuz, G.G. Batir, Curr. Appl. Phys. 9, 866–871 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    K. Mutsumi, S. Ryousuke, S. Seiko, F. Tadashi, I. Tsuyoshi, M. Ryutaro, M. Takashi, Adv. Funct. Mater. 22, 469–476 (2012)CrossRefGoogle Scholar
  26. 26.
    E.E. Sheina, S.M. Khersonsky, E.G. Jones, R.D. McCullough, Chem. Mater. 17, 3317–3319 (2005)CrossRefGoogle Scholar
  27. 27.
    Y.-S. Yoon, H.-S. Sohn, J.-C. Lee, Polymer 50, 1395–1402 (2009)CrossRefGoogle Scholar
  28. 28.
    C.-H. Lai, I.C. Wu, C.-C. Kang, J.-F. Lee, M.-L. Ho, P.-T. Chou, Chem. Commun. 1996–1998 (2009)Google Scholar
  29. 29.
    Z. Han, J. Zhang, X. Yang, Z. Hong, W. Cao, J. Inorg. Organomet. Polym. Mater. 21, 554–561 (2010)Google Scholar
  30. 30.
    R. Cervini, A.B. Holmes, S.C. Moratti, A. Köhler, R.H. Friend, Synth. Met. 76, 169–171 (1996)CrossRefGoogle Scholar
  31. 31.
    J. Chen, J. Feng, W. Yan, RSC Adv. 5, 86945–86953 (2015)CrossRefGoogle Scholar
  32. 32.
    X. Li, D. Wang, G. Cheng, Q. Luo, J. An, Y. Wang, Appl. Catal. B Environ. 81, 267–273 (2008)CrossRefGoogle Scholar
  33. 33.
    Z. Han, J. Zhang, X. Yang, H. Zhu, W. Cao, Sol. Energy Mater. Sol. Cells 94, 755–760 (2010)CrossRefGoogle Scholar
  34. 34.
    Z. Han, J. Zhang, X. Yang, H. Zhu, W. Cao, J. Inorg. Organomet. Polym. Mater. 71, 1316–1323 (2010)Google Scholar
  35. 35.
    L. Ye, J. Mao, J. Liu, Z. Jiang, T. Peng, L. Zan, J. Mater. Chem. A 1, 10532–10537 (2013)CrossRefGoogle Scholar
  36. 36.
    J. Chen, N. Wang, H. Ma, J. Zhu, J. Feng, W. Yan, J. Chem. Eng. Data 62, 2208–2221 (2017)CrossRefGoogle Scholar
  37. 37.
    H. Li, J. Li, Q. Xu, X. Hu, Anal. Chem. 83, 9681–9686 (2011)CrossRefGoogle Scholar
  38. 38.
    E.A. Bazzaoui, G. Levi, S. Aeiyach, J. Aubard, J.P. Marsault, P.C. Lacaze, J. Phys. Chem. 99, 6628–6634 (1995)CrossRefGoogle Scholar
  39. 39.
    A. Bongini, G. Barbarella, M. Zambianchi, V. Hernández, J.T.L. Navarrete, Synth. Met. 108, 27–31 (2000)CrossRefGoogle Scholar
  40. 40.
    G. Shi, A. Jingkun Xu, M. Fu, J. Phys. Chem. B 106, 288–292 (2011)CrossRefGoogle Scholar
  41. 41.
    Q.T. Vu, M. Pavlik, N. Hebestreit, U. Rammelt, W. Plieth, J. Pfleger, React. Funct. Polym. 65, 69–77 (2005)CrossRefGoogle Scholar
  42. 42.
    J.M. Calatayud, J. Balbuena, M. Cruz-Yusta, F. Martín, P. Pardo, L. Sánchez, J. Alarcón, Ceram. Int. 44, 8232–8241 (2018)CrossRefGoogle Scholar
  43. 43.
    S. Pan, X. Liu, M. Guo, S.f. Yu, H. Huang, H. Fan, G. Li, J. Mater. Chem. 3, 11437–11443 (2015)CrossRefGoogle Scholar
  44. 44.
    S. Takemura, H. Kato, Y. Nakajima, Appl. Surf. Sci. 144–145, 360–365 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    H. Liang, X. Li, Appl. Catal. B Environ. 86, 8–17 (2009)CrossRefGoogle Scholar
  46. 46.
    S. Paul, A. Choudhury, Appl. Nanosci. 4, 839–847 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    E. Zhou, C. He, Z.A. Tan, C. Yang, Y. Li, J. Polym. Sci. Part A Polym. Chem. 44, 4916–4922 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    R. Nosrati, A. Olad, H. Najjari, Surf. Coat. Technol. 316, 199–209 (2017)CrossRefGoogle Scholar
  49. 49.
    J. Yu, F. Xie, Z. Wu, T. Huang, J. Wu, D. Yan, C. Huang, L. Li, Electrochim. Acta 259, 968–974 (2018)CrossRefGoogle Scholar
  50. 50.
    X. Wang, H. Liu, X. Chen, D.G. Evans, W. Yang, Electrochim. Acta 78, 115–121 (2012)CrossRefGoogle Scholar
  51. 51.
    J.S. Sagu, K.G.U. Wijayantha, A.A. Tahir, Electrochim. Acta 246, 870–878 (2017)CrossRefGoogle Scholar
  52. 52.
    B.S. Singu, U. Male, P. Srinivasan, S. Pabba, J. Solid State Electrochem. 18, 1995–2003 (2014)CrossRefGoogle Scholar
  53. 53.
    G. Ramesh, S. Palaniappan, K. Basavaiah, Ionics 24, 1475–1485 (2018)CrossRefGoogle Scholar
  54. 54.
    G.P. Pandey, A.C. Rastogi, C.R. Westgate, J. Power Sources 245, 857–865 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    X. He, C.P. Yang, G.L. Zhang, D.W. Shi, Q.A. Huang, H.B. Xiao, Y. Liu, R. Xiong, Mater. Des. 106, 74–80 (2016)CrossRefGoogle Scholar
  56. 56.
    K. Wu, J. Zhao, R. Wu, B. Ruan, H. Liu, M. Wu, J. Electroanal. Chem. 823, 527–530 (2018)CrossRefGoogle Scholar
  57. 57.
    L. Jiang, X. Lu, C. Xie, G. Wan, H. Zhang, T. Youhong, J. Phys. Chem. C 119, 3903–3910 (2015)CrossRefGoogle Scholar
  58. 58.
    L. Tong, J. Liu, S.M.B. \omega oyer, L.A. Sonnenberg, M.T. Fox, D. Ji, J. Feng, W.E. Bernier, W.E. Jones, Electrochim. Acta 224, 133–141 (2017)CrossRefGoogle Scholar
  59. 59.
    Y. Liu, Y. Ma, S. Guang, H. Xu, X. Su, J. Mater. Chem. A 2, 813–823 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringNanjing Forestry UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest BiomassNanjingPeople’s Republic of China

Personalised recommendations