Advertisement

Applied Physics A

, 124:847 | Cite as

Nanosecond laser ablation of Ag–Au films in water for fabrication of nanostructures with tunable optical properties

  • R. G. NikovEmail author
  • N. N. Nedyalkov
  • Ru. G. Nikov
  • D. B. Karashanova
Article
  • 101 Downloads

Abstract

In this study, we present results on nanosecond laser ablation of Ag–Au bimetallic thin films in double-distilled water. A standard on-axis pulsed laser deposition technology is used for the thin-film deposition. The targets used in the deposition stage were composed of two sections, each containing Au or Ag. Varying the area of the sections of the target, thin bimetallic films with different ratio of Ag:Au (72:28, 56:44, 50:50, and 34:66) were obtained. As-deposited thin films were immersed in double-distilled water and undergo irradiation with nanosecond laser pulses. The optical absorption spectra of the obtained bimetallic colloids show a single-surface plasmon resonance (SPR) band, positioned between SPR bands of the monometallic Ag and Au nanoparticles (NPs), proving the formation of Ag–Au alloyed NPs. A linear dependence of the SPR maximum of the resulting colloidal NPs on the metal concentration of the deposited thin films was established. The influence of the laser wavelength (the four harmonics of Nd:YAG laser), laser fluence and film thickness on the morphology, particle-size distribution, and optical properties of the obtained colloidal Ag–Au NPs was also studied. TEM analyses of the dried drops of the colloids reveal mainly two types of shapes of the produced nanostructures depending on the processing conditions: spherical NPs and network of nanowires. A characteristics size of the formed nanostructures of about a few nanometers was estimated in the cases of ablation at all the wavelengths used. However, a broader size distribution and presence of larger amount of bigger particles (diameters up to 50 nm) were observed in the case of ablation at 1064 nm. The laser fluence and film thickness are also found to influence the nanostructure size and morphology. The proposed technique can be a basis for the fabrication of complex nanostructure colloids with application in biophotonics, sensor design, and catalysis.

Notes

Acknowledgements

The authors acknowledge the financial support of the project DFNP-17-117 “Preparation of complex colloidal nanostructures by laser ablation of thin films and structures in liquid” under the scientific program “Assistance for young scientists”, BAS.

References

  1. 1.
    H. Guo, Y. Chen, X. Chen, R. Wen, G.H. Yue, D.L. Peng, Nanotechnology 22, 195604 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    W. Yuling, C. Hongjun, D. Shaojun, W. Erkang, J. Chem. Phys. 125, 044710 (2006)CrossRefGoogle Scholar
  3. 3.
    L. Xia, X. Hu, X. Kang, H. Zhao, M. Sun, X. Cihen, Colloids Surf. A Physicochem. Eng. Aspects 367, 96 (2010)CrossRefGoogle Scholar
  4. 4.
    M.W.H. Takamura, H. Sugai, Nanoscale Res. Lett. 4, 565 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    K. Chatterjee, S. Sarkar, K.J. Rao, S. Paria, Adv. Colloid Interface Sci. 209, 8 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Link, Z.L. Wang, M.A. El-Sayed, J. Phys. Chem. B 103, 3529 (1999)CrossRefGoogle Scholar
  7. 7.
    Z. Yan, D.B. Chrisey, J. Photochem. Photobiol. C Photochem. Rev. 13, 204 (2012)CrossRefGoogle Scholar
  8. 8.
    H. Han, Y. Fang, Z. Li, H. Zhu, Appl. Phys. Lett. 92, 023116 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Chen, H. Wu, Z. Li, P. Wang, L. Yang, Y. Fang, Plasmonics 7, 509 (2012)CrossRefGoogle Scholar
  10. 10.
    O.M. Wilson, R.W.J. Scott, J.C. Garcia-Martinez, R.M. Crooks, J. Am. Chem. Soc. 127, 1015 (2005)CrossRefGoogle Scholar
  11. 11.
    S. Devi, A. Pal, S. Shah, Colloids Surf. A 302, 51 (2007)CrossRefGoogle Scholar
  12. 12.
    P. Raveendran, J. Fu, S.L. Wallen, Green Chem. 8, 34 (2006)CrossRefGoogle Scholar
  13. 13.
    Y. Ji, S. Yang, S. Guo, X. Song, B. Ding, Z. Yang, Colloids Surf. A Physicochem. Eng. Aspects 372, 204 (2010)CrossRefGoogle Scholar
  14. 14.
    G.C. Papavassiliou, J. Phys. F 6, 103 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    I. Lee, S.W. Han, K. Kim, Chem. Commun. 18, 1782 (2001)CrossRefGoogle Scholar
  16. 16.
    V. Amendola, S. Scaramuzza, F. Carraro, E. Cattaruzza, J. Colloid Interface Sci. 489, 18 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027 (2013)CrossRefGoogle Scholar
  18. 18.
    T. Tsuji, T. Yahata, M. Yasutomo, K. Igawa, M. Tsuji, Y. Ishikawa, N. Koshizaki, Phys. Chem. Chem. Phys. 15(9), 3099 (2013)CrossRefGoogle Scholar
  19. 19.
    A.A. Serkov, P.G. Kuzmin, I.I. Rakov, G.A. Shafeev, Quant. Electron. 46, 713 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    H. Zeng, X. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Adv. Funct. Mater. 22, 1333 (2012)CrossRefGoogle Scholar
  21. 21.
    V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)CrossRefGoogle Scholar
  22. 22.
    R.G. Nikov, N.N. Nedyalkov, P.A. Atanasov, D.B. Karashanova, J. Phys. Conf. Ser. 992, 012046 (2018)CrossRefGoogle Scholar
  23. 23.
    R.G. Nikov, N.N. Nedyalkov, A.S. Nikolov, P.A. Atanasov, M.T. Alexandrov, D.B. Karashanova, Proc. SPIE 9447, 94470M (2015)ADSCrossRefGoogle Scholar
  24. 24.
    A. Semerok, C. Chaleard, V. Detalle, J.L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Salle, P. Palianov, M. Perdrix, G. Petite, Appl. Surf. Sci. 139, 311 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    J.S. Jeon, C.S. Yeh, J. Chin. Chem. Soc. 45, 721 (1998)CrossRefGoogle Scholar
  26. 26.
    T. Tsuji, K. Iryo, N. Watanabe, M. Tsuji, Appl. Surf. Sci. 202, 80 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    H. Sakai, Surf. Sci. 351, 285 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    R. Intartaglia, K. Bagga, F. Brandi, Opt. Express 22(3), 3117 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    P.V. Kamat, M. Flumiani, G.V. Hartland, J. Phys. Chem. B 102, 3123 (1998)CrossRefGoogle Scholar
  30. 30.
    A. Menéndez-Manjón, S. Barcikowski, Appl. Surf. Sci. 257, 4285 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    M.B. Mohamed, V. Volkov, S. Link, M.A. El-Sayed, Chem. Phys. Lett. 317, 517 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    J.M. Warrender, M.J. Aziz, Appl. Phys. A 79, 713 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    P. Wagener, S. Barcikowski, Appl. Phys. A 101(2), 435 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    A. Serkov, Chem. Phys. Lett. 647, 68 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    P. Grua, J.P. Morreeuw, H. Bercegol, G. Jonusauskas, F. Valle, Phys. Rev. B 68, 035424 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    K. Yamada, K. Miyajima, F. Mafune, J. Phys. Chem. C 111, 11246 (2007)CrossRefGoogle Scholar
  37. 37.
    A.S. Zav’yalov, I.O. Dorofeev, A.V. Falits, Russ. Phys. J. 49, 276 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of ElectronicsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Optical Materials and TechnologiesBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations