Applied Physics A

, 124:854 | Cite as

A study on structural, spectral, and magnetic properties of Pr–Bi co-doped M-type barium–strontium hexaferrites via the solid-state reaction method

  • Yujie YangEmail author
  • Juxiang Shao
  • Fanhou Wang
  • Khalid Mujasam Batoo
  • Syed Farooq Adil
  • Bilal Hamid Bhat
  • Basharat Ahmad Want


Pr–Bi co-doped M-type Ba–Sr hexaferrites with nominal compositions Ba0.35Sr0.65−xPrxFe12.0−xBixO19 (0.00 ≤ x ≤ 0.40) were synthesized for the first time by the solid-state reaction method. These hexaferrites were characterized by X-ray diffractometer (XRD), Fourier transformer infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM) and thermogravimetric analyzer (TGA). XRD patterns showed that the single M-type hexaferrite phase was obtained only if Pr–Bi content (x) ≤ 0.24. FT-IR frequency bands in the range (608–610) cm−1 and (445–447) cm−1 correspond to the formation of tetrahedral and octahedral clusters of metal oxides in the hexaferrites, respectively. FE-SEM micrographs indicated that the grains were of platelet-like shapes. The saturation magnetization (Ms), remanent magnetization (Mr), magnetic anisotropy field (Ha), first anisotropy constant (K1) and coercivity (Hc) first increased with Pr–Bi content (x) from 0.00 to 0.08, and then decreased when Pr–Bi content (x) ≥ 0.08. The Curie temperature (Tc) decreased with increasing Pr–Bi content (x) from 0.00 to 0.40.



This work was supported by the Scientific Research Fund of SiChuan Provincial Education Department (nos. 13ZA0918, 14ZA0267 and 16ZA0330), the Major Project of Yibin City of China (nos. 2012SF034, 2016GY025 and 2016 QD002), Scientific Research Key Project of Yibin University (no. 2015QD13) and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University (no. JSWL2015KFZ04). Author K. M. Batoo is thankful to the Deanship of Scientific Research at King Saud University for its funding through the Research Group Project no. RG-1437-030.


  1. 1.
    P. Xu, X.J. Han, H.T. Zhao, Z.H. Liang, J.F. Wang, Effect of stoichiometry on the phase formation and magnetic properties of BaFe12O19 nanoparticles by reverse micelle technique. Mater. Lett. 62, 1305–1308 (2008)CrossRefGoogle Scholar
  2. 2.
    H. Sözeri, A. Baykal, B. Ünal, Low-temperature synthesis of single-domian Sr-hexaferrite particles by solid-state reaction route. Phys. Status Solidi A 209, 2002–2013 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)CrossRefGoogle Scholar
  4. 4.
    Z. Yang, C.S. Wang, X.H. Wang, X.H. Li, H.X. Zeng, (Zn, Ni, Ti) suibstituted barium ferrite particles with improved temperature coefficient of coercivity. Mater. Sci. Eng. B 90, 142–145 (2002)CrossRefGoogle Scholar
  5. 5.
    I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, Effects of Ga–Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol–gel auto-combustion route. J. Alloys Compd. 547, 118–125 (2013)CrossRefGoogle Scholar
  6. 6.
    G. Litsardakis, I. Manolakis, A.C. Stergiou, C. Serletis, K.G. Efthimiadis, new Dy-substituted Ba hexaferrites with high coercivity. IEEE Trans. Magn. 44, 4222–4224 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M.A.P. Buzinaro, N.S. Ferreira, F. Cunha, M.A. Macêdo, Hopkinson effect, structural and magnetic properties of M-type Sm3+-doped SrFe12O19 nanoparticles produced by a proteic sol–gel process. Ceram. Int. 42, 5865–5872 (2016)CrossRefGoogle Scholar
  8. 8.
    C. Lei, S. Tang, Y. Du, Synthesis of aligned La3+-substituted Sr-ferrites via molten salt assisted sintering and their magnetic properties. Ceram. Int. 42, 15511–15516 (2016)CrossRefGoogle Scholar
  9. 9.
    H. Mocuta, L. Lechevallier, J.M. Le Breton, J.F. Wang, I.R. Harris, Structural and magnetic properties of hydrothermally synthesized Sr1−xNdxFe12O19 hexagonal ferrites. J. Alloys Compd. 364, 48–52 (2004)CrossRefGoogle Scholar
  10. 10.
    J.F. Wang, C.B. Ponton, I.R. Harris, A study of Pr-substituted strontium hexaferrite by hydrothermal synthesis. J. Alloys Compd. 403, 104–109 (2005)CrossRefGoogle Scholar
  11. 11.
    G. Litsardakis, I. Manolakis, C. Serletis, K.G. Efthimiadis, High coercivity Gd-substituted Ba hexaferrites, prepared by chemical coprecipitation. J. Appl. Phys. 103, 07E501 (2008)CrossRefGoogle Scholar
  12. 12.
    Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101–107 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    T.P. Xie, L.J. Xu, C.L. Liu, Synthesis and properties of composite magnetic material SrCoxFe12−xO19 (x = 0–0.3). Powder Technol. 232, 87–92 (2012)CrossRefGoogle Scholar
  14. 14.
    D.A. Vinnik, A.S. Semisalova, L.S. Mashkovtseva, A.K. Yakushechkina, S. Nemrava, S.A. Gudkova, D.A. Zherebtsov, N.S. Perov, L.I. Isaenko, R. Niewa, Structural and magnetic characterization of Zn-substituted barium hexaferrite single crystals. Mater. Chem. Phys. 163, 416–420 (2015)CrossRefGoogle Scholar
  15. 15.
    S.M. El-Sayed, T.M. Meaz, M.A. Amer, H.A. El Shersaby, Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Phys. B 426, 137–143 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    I.A. Auwal, H. Güngüneş, A. Baykal, S. Güner, S.E. Shirsath, M. Sertkol, Structural, morphological, optical, cation distribution and Mössbauer analysis of Bi3+ substituted strontium hexaferrite. Ceram. Int. 42, 8627–8635 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Qiu, Y. Wang, M. Gu, Effect of Cr substitution on microwave absorption of BaFe12O19. Mater. Lett. 60, 2728–2732 (2006)CrossRefGoogle Scholar
  18. 18.
    I. Bsoul, S.H. Mahood, Magnetic and structural properties of BaFe12−xGaxO19 nanoparticles. J. Alloys Compd. 489, 110–114 (2010)CrossRefGoogle Scholar
  19. 19.
    D.A. Vinnik, A.Yu. Tarasova, D.A. Zherebtsov, L.S. Mashkovtseva, S.A. Gudkova, S. Nemrava, A.K. Yakushechkina, A.S. Semisalova, L.I. Isaenko, R. Niewa, Cu-substituted barium hexaferrite crystal growth and characterization. Ceram. Int. 41, 9172–9176 (2015)CrossRefGoogle Scholar
  20. 20.
    Z. Su, Y. Chen, B. Hu, A.S. Sokolov, S. Bennett, L. Burns, X.L. Xing, V.G. Harris, Crystallographically textured self-biased W-type hexaferrites for X-band microwave applications. J. Appl. Phys. 113, 17B305 (2013)CrossRefGoogle Scholar
  21. 21.
    G. Litsardakis, I. Manolakis, K. Efthimiadis, Structural and magnetic properties of barium hexaferrites with Gd–Co substitution. J. Alloys Compd. 427, 194–198 (2007)CrossRefGoogle Scholar
  22. 22.
    H.M. Khan, M.U. Islam, Y.B. Xu, M.N. Ashiq, I. Ali, M.A. Iqbal, M. Ishaque, Structural and magnetic properties of Pr–Ni substituted Ca0.5Ba0.5Fe12O19 hexa-ferrite nanoparticles. Ceram. Int. 40, 6487–6493 (2014)CrossRefGoogle Scholar
  23. 23.
    C. Herme, S.E. Jacobo, P.G. Bercoff, B. Arcondo, Mössbauer analysis of Nd–Co M-type strontium hexaferrite with different iron content. Hyperfine Interact. 195, 205–212 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    H.M. Khan, M.U. Islam, Y.B. Xu, M.A. Iqbal, I. Ali, Structural and magnetic properties of TbZn-substituted calcium strontium M-type nano-structured hexa-ferrites. J. Alloys Compd. 589, 258–262 (2014)CrossRefGoogle Scholar
  25. 25.
    W. Li, X. Qiao, M. Li, T. Liu, H.X. Peng, La and Co substituted M-type barium ferrites processed by sol–gel combustion synthesis. Mater. Res. Bull. 48, 4449–4453 (2013)CrossRefGoogle Scholar
  26. 26.
    Y.J. Yang, X.S. Liu, Microtructure and magnetic properties of La–Cu doped M-type strontium ferrites prepared by ceramic process. Mater. Technol. 29, 232–236 (2014)CrossRefGoogle Scholar
  27. 27.
    C. Wu, Z. Yu, K. Sun, A.S. Sokolov, R. Guo, Y. Yang, C. Yu, X. Jiang, Z. Lan, V.G. Harris, Excellent microwave and magnetic properties of La–Cu substituted Ba-hexaferrites prepared by ceramic process. arXiv:1801.05945 (2018). Accessed 14 Nov 2018Google Scholar
  28. 28.
    R.S. Alam, M. Moradi, M. Rostami, H. Nikmanesh, R. Moayedi, Y. Bai, Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 381, 1–9 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    M. Waqar, M.A. Rafiq, T.A. Mirza, F.A. Khalid, A. Khaliq, M.S. Anwar, M. Saleem, Synthesis and properties of nickle-doped nanocrystalline barium hexaferrite ceramic materials. Appl. Phys. A 124, 286 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    M.J. Iqbal, M.N. Ashiq, Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383–389 (2008)CrossRefGoogle Scholar
  31. 31.
    V.C. Chavan, S.E. Shisath, M.L. Mane, R.H. Kadam, S.S. More, Transformtion of hexagonal to mixed spinel crystal structure and magnetic properties of Co2+ substituted BaFe12O19. J. Magn. Magn. Mater. 398, 32–37 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    R.E. El Shater, E.H. El-Ghazzawy, M.K. El-Nimr, Study of the sintering temperature and the sintering time period effects on the structural and magnetic properties of M-type substituted hexaferrite BaFe12O19. J. Alloys Compd. 739, 327–334 (2018)CrossRefGoogle Scholar
  33. 33.
    S. Güner, I.A. Auwal, A. Baykal, H. Sözeri, Synthesis, characterization and magneto optical properties of BaBixLaxYxFe12−3xO19 (0.0 ≤ x ≤ 0.33) hexaferrites. J. Magn. Magn. Mater. 416, 261–268 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    A. Sharbati, G.R. Amiri, Magnetic, microwave absorption and structural properties of Mg–Ti added Ca–M hexaferrite nanoparticles. J. Mater. Sci. Mater. Electron. 29, 1118–1122 (2018)CrossRefGoogle Scholar
  35. 35.
    U. Topal, H. Ozkan, H. Sozeri, Synthesis and characterization of nanocrystaline BaFe12O19 obtained at 850 °C by using ammonium nitrate melt. J. Magn. Magn. Mater. 284, 416–422 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    R. Vinaykumar, R. Mazumder, J. Bera, Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol–gel combustion and solid state route. J. Magn. Magn. Mater. 429, 359–366 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    M.A. Almessiere, Y. Slimani, H.S. El Sayed, A. Baykal, Structural and magnetic properties of Ce–Y substituted strontium nanohexaferrites. Ceram. Int. 44, 12511–12519 (2018)CrossRefGoogle Scholar
  38. 38.
    F.L. Wei, M. Lu, Z. Yang, The temperature dependence of magnetic properties of Zn–Ti substituted Ba-ferrite particles for magnetic recording. J. Magn. Magn. Mater. 191, 249–253 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yujie Yang
    • 1
    Email author
  • Juxiang Shao
    • 1
  • Fanhou Wang
    • 1
  • Khalid Mujasam Batoo
    • 2
  • Syed Farooq Adil
    • 2
  • Bilal Hamid Bhat
    • 3
  • Basharat Ahmad Want
    • 3
  1. 1.Computational Physics Key Laboratory of Sichuan Province, School of Physics and Electronic EngineeringYibin UniversityYibinPeople’s Republic of China
  2. 2.King Abdullah Institute For NanotechnologyKing Saud UniversityRiyadhSaudi Arabia
  3. 3.SSRL, Department of PhysicsUniversity of KashmirSrinagarIndia

Personalised recommendations