Advertisement

Applied Physics A

, 124:856 | Cite as

Effect of heat treatment on infrared and ultraviolet–visible spectroscopic studies of the PPnBMA thin films

  • Rahima Nasrin
  • A. H. Bhuiyan
Article
  • 26 Downloads

Abstract

In this paper, a comparative analyses on the surface morphological, compositional, structural and optical behavior of as-deposited and heat treated plasma polymerized n-butyl metharylate (PPnBMA) thin films has been presented. Scanning electron microscopic observation exhibited that the heat-treated PPnBMA (at 473 K for 1 h) thin film surface was smoother and more compact than the as-deposited one. From energy dispersive X-ray spectra it would be predicted that carbon is present in higher proportion in heat-treated PPnBMA thin films and the presence of oxygen is lower. TGA curves display that the thermal stability increases due to heat treatment. The FTIR spectroscopic analysis signifies that absorption bands are shifted to lower or higher wavenumbers owing to heat treatment representing structural alteration due to decrease of cross-linking. The direct and indirect transition energy gaps (Egd and Egi) were evaluated from optical absorption spectra and found that the values of Egd and Egi were increasing trend with the increase of thickness for both as-deposited and heat-treated PPnBMA thin films. But for heat-treated PPnBMA thin films Egd and Egi values are decreased compared to that of as-deposited PPnBMA. The change of other optical parameters such as the extinction coefficient, Urbach energy and steepness parameter due to heat treatment were also discussed.

Notes

Acknowledgements

This work was financial supported by the Bangladesh University of Engineering and Technology (BUET). Dr. Rahima Nasrin is grateful to Professor Dr. S. M. Imamul  Huq, Vice-Chancellor, University of Barisal for his generous support and inspiration to continue this research work.

References

  1. 1.
    H. Biederman, D. Slavínská, Surf. Coat. Technol. 125, 371–376 (2000)CrossRefGoogle Scholar
  2. 2.
    S.R. Forrest, Nature 428, 911–918 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    K. Bazaka, M.V. Jacob, Mater. Lett. 63, 1594–1597 (2009)CrossRefGoogle Scholar
  4. 4.
    H. Yasuda, Plasma Polymerization (Academic Press, New York, 1985)Google Scholar
  5. 5.
    R. d’Agostino (ed.), Plasma Deposition, Treatment and Etching of Polymers (Academic Press, Boston, 1990)Google Scholar
  6. 6.
    I.-S. Bae, S.-H. Cho, S.-B. Lee, Y. Kim, J.-H. Boo, Surf. Coat. Technol. 193, 142–146 (2005)CrossRefGoogle Scholar
  7. 7.
    X.-Y. Zhao, Iran. Polym. J. 19, 823–841 (2010)Google Scholar
  8. 8.
    T. Afroze, A.H. Bhuiyan, Phys. Scr. 88, 045502–045508 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    A.B.M. Shah Jalal, S. Ahmed, A.H. Bhuiyan, M. Ibrahim, Thin Solid Films 288, 108–113 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    R. Ritikos, C.C. Siong, S.M. AbGani, M.R. Muhamad, S.A. Rahman, Jpn. J. Appl. Phys. 48, 101301–101308 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    C.D. Easton, M.V. Jacob, Polym. Degrad. Stab. 94, 597–603 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Arslan, H. Duymuş, F. Yakuphanoglu, J. Phys. Chem. B 110, 276–302 (2006)CrossRefGoogle Scholar
  13. 13.
    W. Ao, J.-S. Limand, P.-K. Shin, J. Electric. Eng. Technol. 6, 836–843 (2011)CrossRefGoogle Scholar
  14. 14.
    R. Matin, A.H. Bhuiyan, Thin Solid Films 520, 6463–6470 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    W.N. Turner, F.C. Johnson, J. Appl. Polym. Sci. 13, 2073–2078 (1969)CrossRefGoogle Scholar
  16. 16.
    H. Akther, A.H. Bhuiyan, Thin Solid Films 474, 14–20 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Yuan, L. Changsheng, Y. Min, J. Mater. Sci. Mater. 19, 2187–2193 (2008)CrossRefGoogle Scholar
  18. 18.
    K. Suhailath, M.T. Ramesan, B. Naufal, P. Periyat, V. CJasna, P. Jayakrishnan, Polym. Bull. 74, 671–677 (2017)CrossRefGoogle Scholar
  19. 19.
    R. Nasrin, A.H. Bhuiyan, Surf. Rev. Lett.  https://doi.org/10.1142/S0218625X18501469 (2018)CrossRefGoogle Scholar
  20. 20.
    R. Nasrin, K.S. Hossain,· A.H. Bhuiyan, Appl. Phys. A 124, 391–398 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    S. Tolansky, Multiple Beam Interferometry of Surfaces and Films (Clarendon Press, Oxford, 1948)zbMATHGoogle Scholar
  22. 22.
    K. Kaniappan, S. Latha, Int. J. Chem. Tech. Res. 3, 708–714 (2011)Google Scholar
  23. 23.
    Y. Xue, A. Patel, V. Sant, S. Sant, Macromol. Mater. Eng. 301, 296–305 (2016)CrossRefGoogle Scholar
  24. 24.
    S.K.J. Al-Ani, A.A. Higazy, J. Mater. Sci. 26, 3670–3674 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    E.A. Davis, N.F. Mott, Philos. Mag. 22, 903–922 (1970)ADSCrossRefGoogle Scholar
  26. 26.
    E.D. Palik (ed.), Hand book of Optical Constants of Solids (Academic Press, San Diego, 1998)Google Scholar
  27. 27.
    R. Matin, A.H. Bhuiyan, J. Phys. Chem. Solids 75, 1179–1186 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    M.J. Rahman, A.H. Bhuiyan, Thin Solid Films 534, 132–136 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    V. Svorcık, O. Lyutakov, I. Huttel, J. Mater. Sci. Mater. Electron. 19, 363–369 (2008)CrossRefGoogle Scholar
  30. 30.
    R.B. Sarker, A.H. Bhuiyan, Int. J. Mod. Phys. B 25, 1941–1955 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    F. Yakuphanoglu, Opt. Mater. 29, 253–258 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    F. Urbach, Phys. Rev. 92, 1324–1335 (1953)ADSCrossRefGoogle Scholar
  33. 33.
    B. Abay, H.S. Guder, H. Efeoglu, Y. K. Yogurtcu, Semicond. Sci. Technol. 15, 535–541 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of BarisalBarisālBangladesh
  2. 2.Department of PhysicsBangladesh University of Engineering and TechnologyDhakaBangladesh

Personalised recommendations