Applied Physics A

, 124:844 | Cite as

Enhancing saturation magnetization of Mg ferrite nanoparticles for better magnetic recoverable photocatalyst

  • Nasser Y. MostafaEmail author
  • Z. Zaki
  • M. M. Hessien
  • A. A. Shaltout
  • M. Alsawat


Simple combustion route was implemented for the preparation of Mo-substituted magnesium ferrite nanoparticles; MgFe2−2xMoxO4 (x = 0.0, 0.1, 0.2 and 0.3). Samples, with x = 0.0, 0.1 and 0.2, revealed only the cubic spinel ferrite phase. Sample with x = 0.3 showed very small amount of FeMoO4, beside MgFe2O4. The lattice parameter diminished with increasing molybdenum contents to x = 0.1, then increased at x ≥ 0.2. The saturation magnetization (Ms) increased from 15.65 to 32.05 emu/g with low level of Mo6+ substitution (x = 0.1), then declined with x > 0.1. This is the first investigation to report Ms of Mg ferrite nanoparticles higher than its bulk value. The change in magnetic properties is correlated with cation distribution between tetrahedral sites (A) and octahedral sites (B). Mo6+ replaced the Fe3+ position in the tetrahedral A-sites for x = 0.1. In samples with x ≥ 0.2, Mo6+ occupied both A-sites and B-sites. Mo substitution decreased the crystallite size and increased the microstrain. Mo substitution in MgFe2O4 enhanced the photocatalytic action compared to bare MgFe2O4. The enhancement was due to the increase in structure defect that inhibits the electrons–holes recombination as well as the increase in surface area.



This research was carried out with the financial support of Taif University (Project #1-1438-5834).


  1. 1.
    G.A. El-Shobaky, A.M. Turky, N.Y. Mostafa, S.K. Mohamed, J. Alloy. Compd. 493, 415–422 (2009)CrossRefGoogle Scholar
  2. 2.
    N.I. Aljuraide, M.A.A. Mousa, N.Y. Mostafa, G.A. El–Shobaky, H.H. Hamdeh, M.A. Ahmed, Int. J. Nanopart. 5, 56–63 (2012)CrossRefGoogle Scholar
  3. 3.
    N.Y. Mostafa, M.M. Hessien, A.A. Shaltout, J. Alloy. Compd. 529, 29–33 (2012)CrossRefGoogle Scholar
  4. 4.
    S.A. Hassanzadeh-Tabrizi, S. Behbahanian, J. Amighian, J. Magn. Magn. Mater. 410, 242–247 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    M. Shahid, L. Jingling, Z. Ali, I. Shakir, M.F. Warsi, R. Parveen, M. Nadeem, Mater. Chem. Phys. 139, 566–571 (2013)CrossRefGoogle Scholar
  6. 6.
    Q. Wen, W. Qian, F. Wei, Chin. J. Catal. 29, 617–623 (2008)CrossRefGoogle Scholar
  7. 7.
    L. Xue, F. Zhang, B. Chen, X. Bai, in Proceedings of the 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, CDCIEM (IEEE, 2011), pp. 2153–2156Google Scholar
  8. 8.
    X. Yuan, H. Wang, Y. Wu, X. Chen, G. Zeng, L. Leng, C. Zhang, Catal. Commun. 61, 62–66 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    A. Boudjemaa, A. Auroux, S. Boumaza, M. Trari, O. Cherifi, R. Bouarab, React. Kinet. Catal. Lett. 98, 319–325 (2009)CrossRefGoogle Scholar
  10. 10.
    H.G. Kim, P.H. Borse, J.S. Jang, E.D. Jeong, O.S. Jung, Y.J. Suh, J.S. Lee, Chem. Commun. 5889–5891 (2009)Google Scholar
  11. 11.
    S.I. Hussein, A.S. Elkady, M.M. Rashad, A.G. Mostafa, R.M. Megahid, J. Magn. Magn. Mater. 379, 9–15 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    S. Bangale, V. Chaugule, R. Prakshale, S. Bamane, Res. J. Pharm. Biol. Chem. Sci. 4, 350–364 (2013)Google Scholar
  13. 13.
    A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, in AIP Conference Proceedings (2012), pp. 415–416Google Scholar
  14. 14.
    S. Bangale, V. Chaugule, R. Prakshale, S. Bamane, Curr. Sci. 105, 984–989 (2013)Google Scholar
  15. 15.
    Y.L. Liu, Z.M. Liu, Y. Yang, H.F. Yang, G.L. Shen, R.Q. Yu, Sens Actuators B Chem. 107, 600–604 (2005)CrossRefGoogle Scholar
  16. 16.
    E. De Grave, A. Govaert, D. Chambaere, G. Robbrecht, Phys. B+C 96, 103–110 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    U.A. Agú, M.I. Oliva, S.G. Marchetti, A.C. Heredia, S.G. Casuscelli, M.E. Crivello, J. Magn. Magn. Mater. 369, 249–259 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Y.M.Z. Ahmed, E.M.M. Ewais, Z.I. Zaki, J. Alloy. Compd. 489, 269–274 (2010)CrossRefGoogle Scholar
  19. 19.
    H. Aono, H. Hirazawa, T. Naohara, T. Maehara, H. Kikkawa, Y. Watanabe, Mater. Res. Bull. 40, 1126–1135 (2005)CrossRefGoogle Scholar
  20. 20.
    J. Chandradass, H. Kim, F.W.Y. Momade, J. Sol Gel Sci. Technol. 65, 189–194 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Chandradass, K.H. Kim, J. Alloy. Compd. 509, L59–L62 (2011)CrossRefGoogle Scholar
  22. 22.
    Q. Chen, A.J. Rondinone, B.C. Chakoumakos, Z. John Zhang 194, 1–7 (1999)Google Scholar
  23. 23.
    Z.K. Heiba, N.Y. Mostafa, O.H. Abd-Elkader, J. Magn. Magn. Mater. 368, 246–251 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, A. Jemni, Appl. Phys. A Mater. Sci. Process. 123 (2017)Google Scholar
  25. 25.
    S. Ramesh, B. Dhanalakshmi, B. Chandra Sekhar, P.S.V. Subba Rao, B. Parvatheeswara Rao, Appl. Phys. A Mater. Sci. Process. 122 (2016)Google Scholar
  26. 26.
    G.A. El-Shobaky, A.M. Turky, N.Y. Mostafa, S.K. Mohamed, Egypt. J. Chem. 51, 837–850 (2008)Google Scholar
  27. 27.
    S.I. Ahmed, Z.K. Heiba, N.Y. Mostafa, A.A. Shaltout, H.S. Aljoudy, Ceram. Int. 44, 20692–20699 (2018)CrossRefGoogle Scholar
  28. 28.
    M.M. Hessien, N.Y. Mostafa, O.H. Abd-Elkader, J. Magn. Magn. Mater. 398, 109–115 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    M.K. Satheeshkumar, E.R. Kumar, C. Srinivas, N. Suriyanarayanan, M. Deepty, C.L. Prajapat, T.V.C. Rao, D.L. Sastry, J. Magn. Magn. Mater. 469, 691–697 (2019)ADSCrossRefGoogle Scholar
  30. 30.
    K. Omri, O.M. Lemine, L.El Mir, Ceram. Int. 43, 6585–6591 (2017)CrossRefGoogle Scholar
  31. 31.
    K. Omri, A. Bettaibi, K. Khirouni, L. El, Mir, Phys. B 537, 167–175 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    A. Manikandan, M. Durka, K. Seevakan, S.A. Antony, J Supercond. Nov. Magn. (2014)Google Scholar
  33. 33.
    R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, J. Mater. Sci. 48, 6509–6518 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    O.M. Hemeda, N.Y. Mostafa, O.H. Abd Elkader, M.A. Ahmed, J. Magn. Magn. Mater. 364, 39–46 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    N.Y. Mostafa, Z.I. Zaki, Z.K. Heiba, J. Magn. Magn. Mater. 329, 71–76 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Int. J. Mol. Sci. 14, 15977–16009 (2013)CrossRefGoogle Scholar
  37. 37.
    J. Jiang, W. Fan, X. Zhang, H. Bai, Y. Liu, S. Huang, B. Mao, S. Yuan, C. Liu, W. Shi, New J. Chem. 40, 538–544 (2016)CrossRefGoogle Scholar
  38. 38.
    R. Dom, P.H. Borse, K.S. Hong, S. Choi, B.S. Lee, M.G. Ha, J.P. Kim, E.D. Jeong, H.G. Kim, J. Korean Phys. Soc. 67, 1639–1645 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    K. Kirchberg, A. Becker, A. Bloesser, T. Weller, J. Timm, C. Suchomski, R. Marschall, J. Phys. Chem. C 121, 27126–27138 (2017)CrossRefGoogle Scholar
  40. 40.
    K. Shetty, B.S. Prathibha, D. Rangappa, K.S. Anantharaju, H.P. Nagaswarupa, H. Nagabhushana, S.C. Prashantha, Mater. Today Proc. 4, 11764–11772 (2017)CrossRefGoogle Scholar
  41. 41.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953)CrossRefGoogle Scholar
  42. 42.
    CRC, Handbook of Chemistry and Physics, CD-ROM Version, 90th Edition ed., 2010Google Scholar
  43. 43.
    L. Neel, Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 230, 375–377 (1950)Google Scholar
  44. 44.
    B. Nandan, M.C. Bhatnagar, S.C. Kashyap, Appl. Phys. A Mater. Sci. Process. 124 (2018)Google Scholar
  45. 45.
    Y. Huang, Y. Tang, J. Wang, Q. Chen, Mater. Chem. Phys. 97, 394–397 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of ScienceTaif UniversityTaifKingdom of Saudi Arabia
  2. 2.Department of Chemistry, Faculty of ScienceSuez Canal UniversityIsmailiaEgypt
  3. 3.Advanced Materials DepartmentCentral Metallurgical Research and Development Institute (CMRDI)HelwanEgypt
  4. 4.Spectroscopy Department, Physics DivisionNational Research CenterDokkiEgypt

Personalised recommendations