Applied Physics A

, 124:834 | Cite as

Rectangular cavity-based perfect dual-band absorber with wide incidence angle in terahertz region

  • Xiaojie Lu
  • Zhongyin XiaoEmail author


In this paper, a dual-band perfect metamaterial absorber(MA) based on rectangular cavity with wide incidence angle is proposed in the terahertz region. The unit of the absorber is composed of three different size rectangular cavities which are placed vertically on a metal plate. The numerical results show that the MA has two distinctive absorption bandwidths from 3.7586 to 4.0977 THz and 5.7635 to 6.0746 THz, respectively, with both absorption rates larger than 90%. Besides, the resonant frequency can be calculated based on rectangular cavity theory, which provides a design guideline for MA of such type. The theoretical predictions of the resonance frequencies have excellent agreements with the simulation ones. What’s more, the physical mechanism of the perfect absorption can be explained based on the distribution of E-field in the absorber and the standing wave theory. Our results provide a new way on realizing perfect absorption based on rectangular cavity.



This work is supported by the National Natural Science Foundation of China (Grant No. 61275070) and Shanghai Natural Science Foundation (Grant No. 15ZR1415900).


  1. 1.
    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of and µ. Sov. Phys. Uspekhi 10, 509 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    N.I. Zheludev, Y.S. Kivshar, From metamaterials to metadevices. Nat. Mater. 11, 917 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    D.R. Smith, J.B. Pendry, Wiltshire M C K. Metamaterials and negative refractive index. Science 77305, 788–792 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    C. Menzel, C. Helgert, C. Rockstuhl et al., Asymmetric transmission of linearly polarized light at optical metamaterials. Phys. Rev. Lett. 104, 253902 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    W. Liu, S. Chen, Z. Li et al., Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface. Opt. Lett. 40(2015): 3185–3188Google Scholar
  6. 6.
    Z. Xiao, D. Liu, X. Ma et al., Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators. Opt. Express 23, 7053–7061 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    X. Liu, T. Tyler, T. Starr et al., Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    H. Chen, B.I. Wu, B. Zhang et al., Electromagnetic wave interactions with a metamaterial cloak. Phys. Rev. Lett. 99, 063903 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    R. Alaee, M. Farhat, C. Rockstuhl et al., A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 20, 28017–28024 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M.M. Hasan, M.R.I. Faruque, M.T. Islam, Dual band metamaterial antenna for LTE/bluetooth/WiMAX system. Sci. Rep. 8, 1240 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    D.Y. Jiang, W.M. Yang, Y.J. Liu et al., The development of a wideband and angle-insensitive metamaterial filter with extraordinary infrared transmission for micro-thermophotovoltaics. J. Mater. Chem. C 3, 3552–3558 (2015)CrossRefGoogle Scholar
  12. 12.
    Y.F. Chau, C.T. Chou Chao, C.M. Lim et al., Depolying tunable metal-shell/dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime. ACS Omega 3, 7508–7516 (2018)CrossRefGoogle Scholar
  13. 13.
    Y.F. Chau, C.T.C. Chao, H.P. Chiang et al., Plasmonic effects in composite metal nanostructures for sensing applications. J. Nanopart. Res. 20, 190 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    N.I. Landy, S. Sajuyigbe, J.J. Mock et al., Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    S. Kim, M.S. Jang, V.W. Brar et al., Electronically tunable perfect absorption in graphene. Nano Lett. 18, 971–979 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    S. Fan, Y. Song, Bandwidth-enhanced polarization-insensitive metamaterial absorber based on fractal structures. J. Appl. Phys. 123, 085110 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    B. Zhu, Z. Wang, C. Huang et al., Polarization insensitive metamaterial absorber with wide incident angle. Prog. Electromagn. Res. 101, 231–239 (2010)CrossRefGoogle Scholar
  18. 18.
    L. Ju, B. Geng, J. Horng et al., Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    X. Shen, T.J. Cui, J. Zhao et al., Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 19, 9401–9407 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    S. Bhattacharyya, K. Srivastava, Vaibhav, Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator. J. Appl. Phys. 115, 064508 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    P. Rufangura, C. Sabah, Dual-band perfect metamaterial absorber for solar cell applications. Vacuum 120, 68–74 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Liu, S. Gu, C. Luo et al., Ultra-thin broadband metamaterial absorber. Appl. Phys. A 108, 19–24 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    B.X. Wang, G.Z. Wang, T. Sang et al., Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure. Sci. Rep. 7, 41373 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    G.D. Wang, M.H. Liu, X.W. Hu et al., Broadband and ultra-thin terahertz metamaterial absorber based on multi-circular patches. Eur. Phys. J. B 86, 304 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    J. Yang, S. Qu, H. Ma et al., Broadband infrared metamaterial absorber based on anodic aluminum oxide template. Opt. Laser Technol. 101, 177–182 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    W. Li, U. Guler, N. Kinsey et al., Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26(2014): 7959–7965Google Scholar
  27. 27.
    Y.F. Chau, C.K. Wang, L. Shen et al., Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci. Rep. 7, 16817 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Y.F. Chau, H.H. Yeh, A comparative study of solid-silver and silver-shell nanodimers on surface plasmon resonances. J. Nanopart. Res. 13, 637–644 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    X. Ling, Z. Xiao, X. Zheng, Tunable terahertz metamaterial absorber and the sensing application. J. Mater. Sci. Mater. Electron. 29, 1497–1503 (2018)CrossRefGoogle Scholar
  30. 30.
    H. Huang, H. Xia, W. Xie et al., Design of a size-efficient tunable metamaterial absorber based on leaf-shaped cell at near-infrared regions. Results Phys. 9, 1310–1316 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    J. Hao, L. Zhou, M. Qiu, Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys. Rev. B 83, 165107 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    X.Y. Peng, B. Wang, S. Lai et al., Ultrathin multi-band planar metamaterial absorber based on standing wave resonances. Opt. Express 20, 27756–27765 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Special Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Date ScienceShanghai UniversityShanghaiChina

Personalised recommendations