Advertisement

Applied Physics A

, 124:840 | Cite as

Performance analysis of a liquid-filled glass prism-coupled metal-clad planar waveguide sensor

  • Gulab Chand Yadav
  • Suraj Prakash
  • Gaurav Sharma
  • Sushil Kumar
  • Vivek SinghEmail author
Article
  • 44 Downloads

Abstract

The performance of a metal-clad planar waveguide-based sensor coupled with a liquid-filled prism is studied and is compared with a similar waveguide sensor coupled with a solid prism. The characteristic equations of these waveguides are obtained by matching field components at various boundaries, and the reflectivity of these waveguides is obtained using transfer matrix method. The obtained dispersion characteristic shows that the transverse electric field components are loosely bound in liquid-filled prism-coupled waveguide-based sensor. Unlike to solid prism-coupled waveguide sensor, the performance of liquid-filled prism-coupled waveguide sensor increases with increase of effective refractive index. Hence, the proposed liquid-filled prism-coupled waveguide-based sensor shows better performance at high effective refractive index.

Notes

Acknowledgements

The work is supported by the project No. MRP-MAJOR-ELEC-2013-12554, University Grant Commission, New Delhi.

References

  1. 1.
    C. McDonough, C.S. Burke, B.D. MacCraith, Chem. Rev. 108, 400–422 (2008)CrossRefGoogle Scholar
  2. 2.
    J. Wang, Chem. Rev. 108, 814–825 (2008)CrossRefGoogle Scholar
  3. 3.
    Y. Lin, F. Lu, Y. Tu, Z. Ren, Nano Lett. 4, 191–195 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    P. Xiao, X. Wang, J. Sun, H. Li, M. Huang, X. Chen, Z. Cao, Sens. Actuators A 183, 22–27 (2012)CrossRefGoogle Scholar
  5. 5.
    N. Skivensen, R. Horvath, S. Thinggaaed, N.B. Larsen, H.C. Pedersen, Biosens. Bioelectron. 22, 1282–1288 (2007)CrossRefGoogle Scholar
  6. 6.
    G.C. Yadav, G. Sharma, S. Kumar, V. Singh, Optik 147, 366–372 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    S. Kumar, G. Sharma, V. Singh, Progress. Electromagn. Res. Lett. 37, 167–176 (2013)CrossRefGoogle Scholar
  8. 8.
    N. Cennamo, F. Mattiello, L. Zeni, Sensors 1488, 02–09 (2017)Google Scholar
  9. 9.
    S. Kumar, V. Gupta, G. Sharma, G.C. Yadav, V. Singh, Silicon 8, 533–539 (2016)CrossRefGoogle Scholar
  10. 10.
    Z. Xiao-hong, L. Lan-hua, X. Wei-qi, S. Bao-dong, S. Jian-wu, H. Miao, S. Han-chang. Sci. Rep. 4572, 01–07 (2014)Google Scholar
  11. 11.
    R. Horvath, H.C. Pedersen, N. Skivesen, C. Svanberg, N.B. Larsen, J. Micromech. Microeng. 15, 1260–1264 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    G.C. Yadav, G. Sharma, S. Kumar, R. Deepak, S. Kumar, V. Prasad, Singh, Optik 138, 289–294 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    N. Skivension, R. Hovrath, H.C. Pederson, Sens. Actuators B 106, 668–676 (2005)CrossRefGoogle Scholar
  14. 14.
    R. Horvath, H.C. Pedersen, N.B. Larsen, Appl. Phys. Lett. 81, 2166–2168 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    H.M. Kullab, S.A. Taya, Optik 145, 97–100. (2014)ADSCrossRefGoogle Scholar
  16. 16.
    S.A. Taya, H.M. Kullab, Appl. Phys. A 116, 1841–1846 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    H.M. Kullab, S.A. Taya, T.M. El-Agez, J. Opt. Soc. Am. B 29, 959 – 964 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Zhang, S. Han, S. Zhang, P. Liu, Y. Shi, IEEE Photonics J. 7, 6802906 (2015)Google Scholar
  19. 19.
    Y. Yamamoto, T. Kamiya, H. Yanai, Appl. Opt. 14, 322–326 (1975)ADSCrossRefGoogle Scholar
  20. 20.
    B. Liedberg, C. Nylander, I. Lundstrom, Sens. Actuators 4, 299–304 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gulab Chand Yadav
    • 1
  • Suraj Prakash
    • 1
  • Gaurav Sharma
    • 2
  • Sushil Kumar
    • 3
  • Vivek Singh
    • 1
  1. 1.Department of Physics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.School of Basic SciencesIndian Institute of TechnologyBhubaneswarIndia
  3. 3.Department of PhysicsShri Shankar Government CollegeSasaramIndia

Personalised recommendations