Advertisement

Applied Physics A

, 124:841 | Cite as

Theoretical investigation on thermoelectric properties of spin gapless semiconductor \(\hbox {Cr}_{2}\hbox {ZnSi}\)

  • Xiaorui Chen
  • Yuhong Huang
  • Hongkuan Yuan
  • Jing Liu
  • Hong ChenEmail author
Article
  • 73 Downloads

Abstract

Thermoelectric properties as well as electronic and magnetic properties of Heusler alloy \(\hbox {Cr}_{2}\hbox {ZnSi}\) are investigated by employing the first-principles calculations in conjunction with the Boltzmann transport theory and deformation potential (DP) theory. The system is confirmed to be a fully compensated ferrimagnetic spin-gapless semiconductor. We obtain optimized lattice constant of 5.846 Å and the zero net magnetic moment. The calculated band structure, served as a hint for its promising thermoelectric properties, shows a zero-width energy gap in the spin-up direction together with an open energy gap in the spin-down one. A detailed study of the chemical potential and temperature dependence of the Seebeck coefficient, lattice and electronic thermal conductivities and hence the figure of merit (ZT) is carried out. The n-type system shows higher ZT values than p-type one in both spin directions, indicating the better thermoelectric performance of n-type system for thermoelectric applications.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11875226 and 11874306, the Natural Science Foundation of Chongqing under Grant Nos. CSTC-2011BA6004 and CSTC-2017jcyjBX0035, and the Postgraduates’ Research and Innovation Project of Chongqing (No. CYB17077).

References

  1. 1.
    H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wölfing, E. Bucher, J. Phys. Condens. Matter 11, 1697–1709 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, C. Uher, Appl. Phys. Lett. 79, 4165–4167 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    G.S. Nolas, J. Poon, M. Kanatzidis, MRS Bull. 31, 199–205 (2006)CrossRefGoogle Scholar
  4. 4.
    C. Yu, T.J. Zhu, R.Z. Shi, Y. Zhang, X.B. Zhao, J. He, Acta Mater. 57, 2757–2764 (2009)CrossRefGoogle Scholar
  5. 5.
    V.J. Kangsabanik, E.A. Alam, J. Mater. Chem. A 5, 6131–6139 (2017)CrossRefGoogle Scholar
  6. 6.
    S.D. Guo, RSC Adv. 6, 47953–47958 (2016)CrossRefGoogle Scholar
  7. 7.
    C.G. Fu, S.Q. Bai, Y.T. Liu, Y.S. Tang, L.D. Chen, X.B. Zhao, T.J. Zhu, Nat. Commun. 6, 8144 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    T. Fang, S. Zheng, T. Zhou, L. Yan, P. Zhang, Phys. Chem. Chem. Phys. 19, 4411–4417 (2017)CrossRefGoogle Scholar
  9. 9.
    Y.J. Zhang, Z.H. Liu, E.K. Liu, G.D. Liu, X.Q. Ma, G.H. Wu, EPL 111, 37009 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    A. Jakobsson, P. Mavropoulos, E. Şaşioǧlu, S. Blügel, M. Ležaić, B. Sanyal, I. Galanakis, Phys. Rev. B 91, 174439 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    P.E. Blöchl, Phys. Rev. B 50, 17953–17979 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558–561 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251–14269 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  15. 15.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, B864–B871 (1964)ADSCrossRefGoogle Scholar
  16. 16.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133–A1138 (1965)ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67–71 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436–7439 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631–16634 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727–12731 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    J. Yan, P. Gorai, B. Ortiz, S. Miller, S.A. Barnett, T. Mason, V. Stevanović, E.S. Toberer, Energy Environ. Sci. 8, 983–994 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Callaway, Phys. Rev. 113, 1046–1051 (1959)ADSCrossRefGoogle Scholar
  24. 24.
    E. Francisco, J.M. Recio, M.A. Blanco, A.M. Pendás, A. Costales, J. Phys. Chem. A 102, 1595–1601 (1998)CrossRefGoogle Scholar
  25. 25.
    I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phys. Rev. B 66, 174429 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244–247 (1944)ADSCrossRefGoogle Scholar
  27. 27.
    F. Birch, Phys. Rev. 71, 809–824 (1947)ADSCrossRefGoogle Scholar
  28. 28.
    Y.Q. Cai, G. Zhang, Y.W. Zhang, J. Am. Chem. Soc. 136, 6269–6275 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Janotti, C.G. Van de Walle, Phys. Rev. B 75, 121201 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    P.H. Jiang, H.J. Liu, D.D. Fan, L. Cheng, J. Wei, J. Zhang, J.H. Liang, J. Shi, Phys. Chem. Chem. Phys. 17, 27558–27564 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Kang, H. Sahin, H.D. Ozaydin, R.T. Senger, F.M. Peeters, Phys. Rev. B 92, 075413 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    J. Bardeen, W. Shockley, Phys. Rev. 80, 72–80 (1950)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physical Science and TechnologySouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations