Applied Physics A

, 124:835 | Cite as

Tuning optical and magnetic properties of nanocrystalline BaTiO3 films by Fe doping

  • Huiping Gao
  • Jianjun TianEmail author
  • Furui Tan
  • Haiwu Zheng
  • Weifeng Zhang


Fe-doped BaTiO3 is a promising multiferroics material due to its appealing physical properties and potential applications in sensors, transducers and non-volatile memories and multilayer capacitors. Herein, Fe-doped BaTiO3 nanocrystalline films were deposited on silicon substrates by chemical solution route. The relation between Fe content and the optical and magnetic properties of the samples was analyzed. X-ray diffraction data show that the films are tetragonal with P4mm space group. The atomic force microscopy measurement indicates that the film surface roughness increases with Fe composition. The optical response behavior of the films was investigated by Adachi’s dielectric function model with fitting ellipsometric spectra in the photon energy 1.5–4.13 eV. With increasing Fe content, the real part of dielectric functions gradually decreases in the transparent region. Moreover, EOBG (the optical band gap) is reduced with increasing Fe composition x, and the relationship between them is EOBG = (3.817–1.440 × x) eV. All Fe-doped films show weak ferromagnetism coming from the bound magnetic polarons and exchange interaction between oxygen vacancies and Fe3+ in the films. When iron content x exceeds 0.06, the magnetization values of the samples exhibit an unsaturated characteristic at more than 3000 Oe magnetic fields, which is due to the competition between the ferromagnetism and the antiferromagnetism of two Fe3+ ions superexchange. These results suggest that optical and magnetic properties of Fe-doped BaTiO3 nanocrystalline films can be changed by Fe composition.



The authors are grateful to Dr. L J Guo and S J Liu for the technical support. This work was supported by Postdoctoral Science Foundation of Henan Province (2012021, 2015048), Scientific and Technological Project in Henan Province (172102210013), Science Project of Education Department of Henan Province (17B140001, 14B140022) and Science and Technology Development Project of Henan Province (152300410060, 162102210170).


  1. 1.
    M. Bibes, A. Barthélémy, Nat. Mater. 7, 425 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    B. Ertuğ, Am. J. Eng. Res. 2, 1–7 (2013)Google Scholar
  3. 3.
    M.M. Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. 87, 855–862 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    T.L. Phan, P. Zhang, D. Grinting, S.C. Yu, J. Appl. Phys. 112, 013909 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    X. Tong, Y.H. Lin, S. Zhang, Y. Wang, C.W. Nan, J. Appl. Phys. 104, 066108 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Guo, L. Pan, C. Bi, H. Qiu, X. Zhao, L. Yang, M.Y. Rafique, J. Magn. Magn. Mater. 325, 24–28 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    A. Rani, J. Kolte, S.S. Vadla, P. Gopalan, Ceram. Int. 42, 8010–8016 (2016)CrossRefGoogle Scholar
  8. 8.
    N. Hiroyuki, K.Y. Hiroshi, Jpn. J. Appl. Phys. 40, L1355 (2001)CrossRefGoogle Scholar
  9. 9.
    L. Yang, H. Qiu, L. Pan, Z. Guo, M. Xu, J. Yin, X. Zhao, J. Magn. Magn. Mater. 350, 1–5 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    A. Rajamani, G.F. Dionne, D. Bono, C.A. Ross, J. Appl. Phys. 98, 063907 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    S. Ray, P. Mahadevan, S. Mandal, S.R. Krishnakumar, C.S. Kuroda, T. Sasaki, T. Taniyama, M. Itoh, Phys. Rev. B 77, 104416 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    S.-F. Wang, Y.C. Hsu, J.P. Chu, C.H. Wu, Appl. Phys. Lett. 88, 042909 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    I.N. Apostolova, A.T. Apostolov, S. Golrokh Bahoosh, J.M. Wesselinowa, J. Appl. Phys. 113, 203904 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    W. Wang, L. Qu, Phys. Stat. Solidi (a) 201, 727–732 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    J. Tian, H. Gao, W. Deng, H. Zheng, F. Tan, W. Zhang, J. Alloys Compd. 687, 529–533 (2016)CrossRefGoogle Scholar
  16. 16.
    Z. Liu, H. Deng, P. Yang, J. Chu, Mater. Lett. 63, 2622–2624 (2009)CrossRefGoogle Scholar
  17. 17.
    X.J. Ye, Z.Z. Zhou, W. Zhong, D.L. Hou, H.T. Cao, C.T. Au, Y.W. Du, Thin Solid Films 519, 2163–2167 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    E. Venkata Ramana, S.M. Yang, R. Jung, M.H. Jung, B.W. Lee, C.U. Jung, J. Appl. Phys. 113, 187219 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Guo, L. Yang, H. Qiu, X. Zhan, J. Yim, L. Cao, Mod. Phys. Lett. B 26, 1250056 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    N.V. Dang, N.T. Dung, P.T. Phong, I.-J. Lee, Phys. B 457, 103–107 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    F. Lin, D. Jiang, X. Ma, W. Shi, J. Magn. Magn. Mater. 320, 691–694 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    F. Lin, D. Jiang, X. Ma, W. Shi, Phys. B 403, 2525–2529 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    B. Xu, K.B. Yin, J. Lin, Y.D. Xia, X.G. Wan, J. Yin, X.J. Bai, J. Du, Z.G. Liu, Phys. Rev. B 79, 134109 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    M. Valant, I. Arčon, I. Mikulska, D. Lisjak, Chem. Mater. 25, 3544–3550 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Zorko, M. Pregelj, M. Gomilsek, Z. Jaglicic, D. Pajic, M. Telling, I. Arcon, I. Mikulska, M. Valant, Sci. Rep. 5, 7703 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    B. Deka, S. Ravi, J. Supercond. Nov. Magn. 2017, 1–7 (2017)Google Scholar
  27. 27.
    X.K. Wei, Y.T. Su, Y. Sui, Q.H. Zhang, Y. Yao, C.Q. Jin, R.C. Yu, J. Appl. Phys. 110, 114112 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    S. Rajan, P.M.M. Gazzali, G. Chandrasekaran, J. Alloys Compd. 656, 98–109 (2016)CrossRefGoogle Scholar
  29. 29.
    H. Liu, B. Cao, C. O’Connor, J. Appl. Phys. 109, 07B516 (2011)CrossRefGoogle Scholar
  30. 30.
    Y.B. Jiang, W.B. Mi, E.Y. Jiang, H.L. Bai, J. Vac. Sci. Technol. A 27, 1172–1177 (2009)CrossRefGoogle Scholar
  31. 31.
    H. Gao, J. Tian, H. Zheng, F. Tan, W. Zhang, J. Mater. Sci. Mater. Electron. 26, 700–704 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Adachi, Phys. Rev. B 43, 12316–12321 (1991)ADSCrossRefGoogle Scholar
  33. 33.
    J.H. Bahng, M. Lee, H.L. Park, I.W. Kim, J.H. Jeong, K.J. Kim, Appl. Phys. Lett. 79, 1664 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    Z.G. Hu, Y.W. Li, M. Zhu, Z.Q. Zhu, J.H. Chu, Appl. Phys. Lett. 92, 081904 – 081901 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    M. Cardona, Phys. Rev. 140, A651–A655 (1965)ADSCrossRefGoogle Scholar
  36. 36.
    C. Zhang, C.L. Wang, J.C. Li, K. Yang, Chin. Phys. 16, 1422 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173–179 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Y.R. Park, S.L. Choi, J.H. Lee, K.J. Kim, J. Korean Phys. Soc. 50, 638–642 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Huiping Gao
    • 1
  • Jianjun Tian
    • 1
    Email author
  • Furui Tan
    • 1
  • Haiwu Zheng
    • 1
  • Weifeng Zhang
    • 1
  1. 1.Henan Key Laboratory of Photovoltaic Materials & School of Physics and ElectronicsHenan UniversityKaifengChina

Personalised recommendations