Applied Physics A

, 124:828 | Cite as

Characteristics of X-ray attenuation in nano-sized bismuth oxide/epoxy-polyvinyl alcohol (PVA) matrix composites

  • Bassam M. Abunahel
  • Iskandar Shahrim Mustafa
  • Nurul Zahirah Noor AzmanEmail author


In this study, the X-ray attenuation by 2 mm matrix composites of epoxy-polyvinyl alcohol (PVA) filled with different percentages of bismuth oxide (Bi2O3) nanoparticles has been investigated using both mammography and general radiography units. The effect of adding thermosetting polymer (epoxy) over thermoplastic polymer (PVA) on the dispersion of n-Bi2O3 within the composite was explained using both secondary and backscattered scanning electron microscopy. The results indicated that the X-ray attenuation by the 2 mm n-Bi2O3/epoxy-PVA composites was increased with the increase of n-Bi2O3 loading while increasing the tube voltage from 23 to 100 kV. Moreover, X-ray was not detected by the composite filled with n-Bi2O3 more than 12 wt% at the tube voltage between 23 and 35 kV. This indicated that the matrix composite with 2 mm thickness filled with ≥ 12 wt% of n-Bi2O3 may be used as an X-ray-shielding material for the lower X-ray photon energies operated between 23 and 35 kV by the diagnostic X-ray machine.



This work was funded under Nippon Sheet Glass Foundation for Materials Science and Engineering, Short-Term Research Grant, USM, Malaysia (304/PFIZIK/6313249) and Fundamental Research Grant Scheme (FRGS), Malaysia (203/PFIZIK/6711564). Moreover, we acknowledge the diligent contribution of Muntaser S. Ahmad in editing and proofreading our research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    M. Tanahashi, Materials 3, 1593–1619 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    V. Harish, N. Nagaiah, T.N. Prabhu, K.T. Varughese, J. Appl. Polym. Sci. 112, 1503–1508 (2009)CrossRefGoogle Scholar
  3. 3.
    W. Osei-Mensah, J.J. Fletcher, K.A. Danso, Int. J. Sci. Technol. 2, 455–461 (2012)Google Scholar
  4. 4.
    N.Z. Noor Azman, S.A. Siddiqui, R. Hart, I.M. Low, Appl. Radiat. Isot. 71, 62–67 (2013)CrossRefGoogle Scholar
  5. 5.
    O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, A.V. Trukhanov, I.S. Kazakevich, S.V. Trukhanov et al., Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. J. Mater. Sci. 52(9), 5345–5358 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, O.V. Lozitsky, O.I. Prokopov, O.A. Lazarenko et al., Electrophysical properties of epoxy-based composites with graphite nanoplatelets and magnetically aligned magnetite. Mol. Cryst. Liq. Cryst. 661(1), 68–80 (2018)CrossRefGoogle Scholar
  7. 7.
    D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, D.S. Vasin, T.I. Zubar et al., Function composites materials for shielding applications: correlation between phase separation and attenuation properties. J. Alloy. Compd. 771, 238–245 (2018)CrossRefGoogle Scholar
  8. 8.
    T.I. Zubar, S.A. Sharko, D.I. Tishkevich, N.N. Kovaleva, D.A. Vinnik, S.A. Gudkova et al., Anomalies in Ni–Fe nanogranular films growth. J. Alloy. Compd. 748, 970–978 (2018)CrossRefGoogle Scholar
  9. 9.
    T.I. Zubar, L.V. Panina, N.N. Kovaleva, S.A. Sharko, D.I. Tishkevich, D.A. Vinnik et al., Anomalies in growth of electrodeposited Ni–Fe nanogranular films. CrystEngComm 20(16), 2306–2315 (2018)CrossRefGoogle Scholar
  10. 10.
    D.I. Tishkevich, S.S. Grabchikov, L.S. Tsybulskaya, V.S. Shendyukov, S.S. Perevoznikov, S.V. Trukhanov et al., Electrochemical deposition regimes and critical influence of organic additives on the structure of Bi films. J. Alloy. Compd. 735, 1943–1948 (2018)CrossRefGoogle Scholar
  11. 11.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko et al., Magnetic, dielectric and microwave properties of the BaFe12−xGaxO19 (x ≤ 1.2) solid solutions at room temperature. J. Magn. Magn. Mater. 442, 300–310 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko et al., Investigation into the structural features and microwave absorption of doped barium hexaferrites. Dalton Trans. 46(28), 9010–9021 (2017)CrossRefGoogle Scholar
  13. 13.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko et al., Effect of gallium doping on electromagnetic properties of barium hexaferrite. J. Phys. Chem. Solids 111, 142–152 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko et al., Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites. J. Magn. Magn. Mater. 462, 127–135 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    S.S. Grabchikov, A.V. Trukhanov, S.V. Trukhanov, I.S. Kazakevich, A.A. Solobay, V.T. Erofeenko et al., Effectiveness of the magnetostatic shielding by the cylindrical shells. J. Magn. Magn. Mater. 398, 49–53 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    A.V. Trukhanov, S.S. Grabchikov, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, E.L. Trukhanova, AC and DC-shielding properties for the Ni80Fe20/Cu film structures. J. Magn. Magn. Mater. 443, 142–148 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, T.I. Zubar, D.S. Vasin, A.V. Trukhanov, Correlation of the synthesis conditions and microstructure for Bi-based electron shields production. J. Alloy. Compd. 749, 1036–1042 (2018)CrossRefGoogle Scholar
  18. 18.
    T. Tang, S.D. Felicelli, Int. J. Eng. Sci. 90, 76–85 (2015)CrossRefGoogle Scholar
  19. 19.
    N.Z. Noor Azman, S.A. Siddiqui, R. Hart, I.M. Low, J. Appl. Polym. Sci. 128, 3213–3219 (2013)CrossRefGoogle Scholar
  20. 20.
    A.A. Azeez, K.Y. Rhee, S.J. Park, D. Hui, Compos. Part B Eng. 45, 308–320 (2013)CrossRefGoogle Scholar
  21. 21.
    D. Yu, C. Shu-Quan, Z. Hong-Xu, R. Chao, K. Bin, D. Ming-Zhu, D. Yao-Dong, Effects of WO3 particle size in WO3/epoxy resin radiation shielding material. Chin. Phys. Lett. 29, 102–108 (2012)Google Scholar
  22. 22.
    C. Weis, E.K. Odermatt, J. Kressler, Z. Funke, T. Wehner, D. Freytag, J. Biomed. Mater. Res. 70B, 191–202 (2004)CrossRefGoogle Scholar
  23. 23.
    M.I. Baker, S.P. Walsh, Z. Schwartz, B.D. Boyan, J. Biomed. Mater. Res. Part B Appl. Biomater. 100B, 1451–1457 (2012)CrossRefGoogle Scholar
  24. 24.
    N.Z. Noor Azman, N.F. Musa, N.N.N. Ab Razak, R.M. Ramli, I.S. Mustafa, A.A. Rahman, N. Yahaya, Z. Appl. Phys. A 122, 818 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    C.M. Bedoya Hincapié, M.J. Pinzón Cárdenas, J.J. Olaya Flores, J.E. Alfonso Orjuela, E. Restrepo-Parra, Dynamics 79, 139–148 (2012)Google Scholar
  26. 26.
    J.H. Cho, M.S. Kim, J.D. Rhim, Radiat. Effect Defects Solids 170, 651–658 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    N.Z. Noor Azman, S.A. Siddiqui, H.J. Haroosh, H.M. Albetran, B. Johannessen, Y. Dong, I.M. Low, J. Synchrotron Radiat. 20, 741–748 (2013)CrossRefGoogle Scholar
  28. 28.
    N.Z. Noor Azman, S.A. Siddiqui, I.M. Low, Appl. Phys. A 110, 137–144 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bassam M. Abunahel
    • 1
  • Iskandar Shahrim Mustafa
    • 1
  • Nurul Zahirah Noor Azman
    • 1
    Email author
  1. 1.School of PhysicsUniversiti Sains MalaysiaGelugorMalaysia

Personalised recommendations