Applied Physics A

, 124:831 | Cite as

Investigation of sintering kinetics and morphological evolution of silver films from nano-dispersion

  • Pavan Pujar
  • P. Anusha
  • Dipti Gupta
  • Saumen MandalEmail author


The present study aimed at investigating the sintering kinetics and the mechanism of achieving uniform film morphology from silver nano-dispersion through evaporation of the solvent. A tuned time elapse between drop casting of silver dispersion and the annealing (dwell-time) acted as the decision maker in engineering the morphology: ring stain (infinite dwell-time), uniform deposit (variable dwell-time) and dot formation (zero dwell-time). Three distinct dwell-times (10, 20 and 30 min) are chosen for the study at different temperatures (120 to 250 °C) and the conclusion is derived based on the profile of the deposit. The frozen morphology that resulted from the evaporation goes through the debonding of surfactant with simultaneous sintering to minimize the surface energy. A linear isothermal sintering model comprising initial grain size, grain growth parameter, annealing time and fractional porosity helps to predict the grain size post-annealing. Theoretical predictions of grain sizes are well matched with experimental ones. The grain growth parameter which shows an upward trend with the annealing temperature is mainly due to a reduction in the porosity and the increase in the fraction of solid–solid interface which shows betterment in the percolation paths available for the movement of carriers.



This work is funded by the Department of Science and Technology – Science and Engineering Research Board (DST-SERB) (ECR/2015/000339). Authors wish to acknowledge Center for Excellence in Nanotechnology (CEN) IIT Bombay.

Supplementary material

339_2018_2249_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2308 KB)


  1. 1.
    S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7, 17–28 (2016)CrossRefGoogle Scholar
  2. 2.
    C. Marambio-Jones, E.M. Hoek, J. Nanoparticle. Res. 12, 1531–1551 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, U.S. Schubert, Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20, 8446–8453 (2010)CrossRefGoogle Scholar
  4. 4.
    A. Kamyshny, S. Magdassi, Small. 10, 3515–3535 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Kamyshny, J. Steinke, S. Magdassi, Open. Appl. Phys. J. 4, 19–36 (2011)CrossRefGoogle Scholar
  6. 6.
    T.M. Tolaymat, A.M. El Badawy, A. Genaidy, K.G. Scheckel, T.P. Luxton, M. Suidan, Sci. Total Environ. 408, 999–1006 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Li, Y. Wu, B.S. Ong, J. Am. Chem. Soc. 127, 3266–3267 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Magdassi, A. Bassa, Y. Vinetsky, A. Kamyshny, Chem. Mater. 15, 2208–2217 (2003)CrossRefGoogle Scholar
  9. 9.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827–829 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    H. Hu, R.G. Larson, J. Phys. Chem. B. 110, 7090–7094 (2006)CrossRefGoogle Scholar
  11. 11.
    M. Majumder, C.S. Rendall, J.A. Eukel, J.Y. Wang, N. Behabtu, C.L. Pint, T.-Y. Liu, A.W. Orbaek, F. Mirri, J. Nam, J. Phys. Chem. B. 116, 6536–6542 (2012)CrossRefGoogle Scholar
  12. 12.
    D. Soltman, B. Smith, H. Kang, S. Morris, V. Subramanian, Langmuir. 26, 15686–15693 (2010)CrossRefGoogle Scholar
  13. 13.
    D. Soltman, V. Subramanian, Langmuir. 24, 2224–2231 (2008)CrossRefGoogle Scholar
  14. 14.
    G. Manjunath, P. Anusha, A. Salian, B. Gupta, S. Mandal, Mater. Res. Express. 5, 014014 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    R.M. German, Mater. Sci. Forum. 835, 50–75 (2016)CrossRefGoogle Scholar
  16. 16.
    R.M. German, Crit. Rev. Solid. State. Mater. Sci. 35, 263–305 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    R. Chaim, M. Levin, A. Shlayer, C. Estournès, Adv. Appl. Ceram. 107, 159–169 (2008)CrossRefGoogle Scholar
  18. 18.
    A. Shugurov, H.-G. Panin, V. Chun, K.O.R.U.S. Loginov, in proceedings. The 9th Russian-Korean International Symposium on, IEEE 528–531, (2005)Google Scholar
  19. 19.
    P. Pujar, S. Gandla, M. Singh, B. Gupta, K. Tarafder, D. Gupta, Y.-Y. Noh, S. Mandal, RSC. Adv. 7, 48253–48262 (2017)CrossRefGoogle Scholar
  20. 20.
    W.J. Scheideler, R. Kumar, A.R. Zeumault, V. Subramanian, Adv. Funct. Mater. 27, 1606062 (2017)CrossRefGoogle Scholar
  21. 21.
    T. Malow, C. Koch, Acta Mater 45, 2177–2186 (1997)CrossRefGoogle Scholar
  22. 22.
    S. Gupta, M. Mandal, Y.N. Katiyar, Mohapatra, Thin. Solid. Films. 520, 5664–5670 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    B.-K. Yoon, B.-A. Lee, S.-J.L. Kang, Acta. Mater. 53, 4677–4685 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pavan Pujar
    • 1
    • 2
  • P. Anusha
    • 1
  • Dipti Gupta
    • 2
  • Saumen Mandal
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology KarnatakaMangaloreIndia
  2. 2.Department of Metallurgical Engineering and Materials Science, Plastic Electronics and Energy LaboratoryIndian Institute of Technology BombayPowaiIndia

Personalised recommendations