Applied Physics A

, 124:820 | Cite as

Influence of calcination on the sol–gel synthesis of lanthanum oxide nanoparticles

  • Humayun KabirEmail author
  • Sooraj Hussain Nandyala
  • M. Mahbubur Rahman
  • Md Alamgir Kabir
  • Artemis StamboulisEmail author



A facile sol–gel technique was employed to synthesize lanthanum oxide nanoparticles (hereafter La2O3 NPs) using micro-sized La2O3 powders, 20% nitric acid, and high-molecular weight polyethylene glycol (PEG) as raw materials. The synthesized La2O3 NPs were calcined at 750, 900, and 1000 °C in air for 2 h. The calcined products were characterised using numerous experimental techniques, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and photoluminescence (PL) spectroscopy. The experimental results indicated that the calcination temperatures have remarkable effects on the crystallinity, particle size, and lattice strains of the La2O3 NPs. The XRD patterns confirmed the hexagonal phase of the La2O3 NPs with lattice constants: a = b = 0.3973, nm and c = 0.6129 nm. The average crystallite size of the La2O3 NPs estimated by electron miscroscopy was in good agreement with the XRD results. The degree of crystallinity, and the average crystallite size of the NPs were increased, while the lattice strains were decreased with the calcination temperatures. The photoluminescence spectra of nanoparticles illustrated a strong emission band at the vicinity of 364 nm, which is typically known to be the green band for La2O3 NPs.

Graphical abstract



The author (H. Kabir) acknowledges gratefully the financial support of Bangladesh Government under the Bangabandhu Fellowship. He also would like to thank Jahangirnagar University, Bangladesh, for providing the required study leave to carry out this work at the Biomaterials Group in the School of Metallurgy and Materials, University of Birmingham, UK. M Mahbubur is also grateful to Jahangirnagar University and Murdoch University for providing logistic supports.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

339_2018_2246_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2609 KB)


  1. 1.
    P. Huang, J. Li, S. Zhang, C. Chen, Y. Han, N. Liu, Y. Xiao, H. Wang, M. Zhang, Q. Yu, Y. Liu, W. Wang, Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepatocytes: Accumulation and oxidative damage. Environ. Toxicol. Pharmacol. 31, 25–32 (2011)CrossRefGoogle Scholar
  2. 2.
    Z.K. Bolaghi, S.M. Masoudpanah, M. Hasheminiasari, Photocatalytic properties of ZnO powders synthesized by conventional and microwave-assisted solution combustion method. J. Sol-Gel. Sci. Technol. 86, 711–718 (2018)CrossRefGoogle Scholar
  3. 3.
    M.H. Oghaz, R.S. Razavi, M. Barekat, M. Naderi, S. Malekzadeh, M. Rezazadeh, Synthesis and characterization of Y2O3 nanoparticles by sol–gel process for transparent ceramics applications. J. Sol-Gel. Sci. Technol. 78, 682–691 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Xin, Y. Qi, X. Ma, Z. Wang, Z. Zhang, S. Zhang, Rare-earth (Nd, Sm, Eu, Gd and Y) enhanced CeO2 solid solution nanorods prepared by co-precipitation without surfactants. Mater. Lett. 64, 2659–2662 (2010)CrossRefGoogle Scholar
  5. 5.
    G. Oskam, Metal oxide nanoparticles: synthesis, characterization and application. J. Sol-Gel Sci Techn. 37, 161–164 (2006)CrossRefGoogle Scholar
  6. 6.
    A.H. Lu, E.L. Salabas, F. Schüth, Magnetic nanoparticles: Synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. 46, 1222–1244 (2007)CrossRefGoogle Scholar
  7. 7.
    J. Das, V.S. Moholkar, S. Chakma, Structural, magnetic and optical properties of sonochemically synthesized Zr-ferrite nanoparticles. Powder Technol. 328, 1–6 (2018)CrossRefGoogle Scholar
  8. 8.
    C. Aubery, C. Solans, S. Prevost, M. Gradzielski, M. Sanchez-Dominguez, Microemulsions as reaction media for the synthesis of mixed oxide nanoparticles: Relationships between microemulsion structure, reactivity, and nanoparticle characteristics. Langmuir 29, 1779–1789 (2013)CrossRefGoogle Scholar
  9. 9.
    N.C. Zheng, Z. Wang, J.Y. Long, L.J. Kong, D.Y. Chen, Z.Q. Liu, Shape-dependent adsorption of CeO2 nanostructures for superior organic dye removal. J. Colloid Interface Sci. 525, 225–233 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    H. Abdulhamid, E. Fridell, M. Skoglundh, Influence of the type of reducing agent (H2, CO, C3 H6 and C3 H8) on the reduction of stored NOX in a Pt/BaO/Al2O3 model catalyst, 2010:161–168 (2004 )Google Scholar
  11. 11.
    S.F. Hasany, I. Ahmed, A. Rehman, Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci. Nanotechnol. 2, 148–158 (2012)CrossRefGoogle Scholar
  12. 12.
    E.K. Goharshadi, S.H. Sajjadi, R. Mehrkhah, P. Nancarrow, Sonochemical synthesis and measurement of optical properties of zinc sulfide quantum dots. Chem. Eng. J. 209, 113–117 (2012)CrossRefGoogle Scholar
  13. 13.
    E.K. Goharshadi, H. Azizi-Toupkanloo, Silver colloid nanoparticles: ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol. 237, 97–101 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Gao, Y. Masuda, K. Koumoto, Micropatterning of lanthanum-based oxide thin film on self-assembled monolayers. J. Colloid Interface Sci. 274, 392–397 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    L. Zhang, L. Zhou, Q.X. Li, H. Liang, H. Qin, S. Masutani, B. Yoza, Toxicity of lanthanum oxide nanoparticles to the fungus Moniliella wahieum Y12T isolated from biodiesel. Chemosphere 199, 495–501 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    J. Kang, Y. Kim, D.W. Cho, Y. Sohn, Synthesis and physicochemical properties of La(OH)3 and La2O3 nanostructures. Mater. Sci. Semicon. Proces. 40, 737–743 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Khanjani, A. Morsali, Synthesis and characterization of lanthanum oxide nanoparticles from thermolysis of nanostructured supramolecular compound. J. Mol. Liq. 153, 129–132 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Liu, G. Wang, L. Lu, Y. Guo, L. Yang, Facile shape-controlled synthesis of lanthanum oxide with different hierarchical micro/nanostructures for antibacterial activity based on phosphate removal. RSC Adv. 7, 40965–40972 (2017)CrossRefGoogle Scholar
  19. 19.
    C.C. Li, M.J. Li, Y.P. Huang, Dispersion of aluminum-doped zinc oxide nanopowder with high solid content in ethylene glycol. Powder Technol. 327, 1–8 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    A.V. Murugan, S.C. Navale, V. Ravi, Synthesis of nanocrystalline La2O3 powder at 100 °C. Mater. Lett. 60, 848–849 (2006)CrossRefGoogle Scholar
  21. 21.
    A. Bahari, A. Anasari, Z. Rahmani, Low temperature synthesis of La2O3 and CrO2 by Sol—Gel process. J. Engi. Technol. Res. 3, 203–208 (2011)Google Scholar
  22. 22.
    S. Jafari Nejad, H. Abolghasemi, M.A. Moosavian, A. Golzary, M.G. Maragheh, Fractional factorial design for the optimization of hydrothermal synthesis of lanthanum oxide nanoparticles under supercritical water condition. J. Supercrit. Fluids 52, 292–297 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Sheng, S. Zhang, S. Lv, W. Sun, Surfactant-assisted synthesis and characterization of lanthanum oxide nanostructures. J. Mater. Sci. 42, 9565–9571 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, Synthesis of lanthanum hydroxide and lanthanum oxide nanoparticles by sonochemical method. J. Alloys Compd. 509, 4098–4103 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Ranjbar, M. Yousefi, Synthesis and characterization of lanthanum oxide nanoparticles from thermolysis of nano-sized lanthanum(III) supramolecule as a novel precursor. J. Inorg. Organomet. Polym Mater. 24, 652–655 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Wang, Y. Zhao, J.Chen,R. Xu, L. Luo, S. Zhong, Self-assembled 3D La(OH)3 and La2O3 nanostructures: fast microwave synthesis and characterization. Superlattices Microstruct. 47, 597–605 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    B. Tang, J. Ge, C. Wu, L. Zhuo, J. Niu, Z. Chen, Z. Shi, Y. Dong, Sol–solvothermal synthesis and microwave evolution of La(OH)3 nanorods to La2O3 nanorods This. Nanotechnol. 15, 1273–1276 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    M.F. Vignolo, S. Duhalde, M. Bormioli, G. Quintana, Structural and electrical properties of lanthanum oxide thin films deposited by laser ablation. Appl. Surf. Sci. 197, 522–526 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    M. Ghiasi, A. Malekzadeh, Synthesis, characterization and photocatalytic properties of lanthanum oxy-carbonate, lanthanum oxide and lanthanum hydroxide nanoparticles. Superlattices Microstruct. 77, 295–304 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Q.L. Zhang, Z.J. Ji, J. Zhou, X.C. Zhao, X.Z. Lan, Preparation of lanthanum oxide nanoparticles by chemical precipitation method. Mater. Sci. Forum 724, 233–236 (2012)CrossRefGoogle Scholar
  31. 31.
    M.A. Farrukh, F. Imran, S. Ali, M.K. Rahmanand, I.I. Naqvi, Micelle assisted synthesis of La2O3 nanoparticles and their applications in photodegradation of bromophenol blue. Russian J. Appl. Chem. 88, 1523–1527 (2015)CrossRefGoogle Scholar
  32. 32.
    C. Wang, Y. Yang, Z. Zhang, F. Liao, J. Ju, Z. Shi, J. Lin, Y. Li, F. Huang, Synthesis of nano-structured La2O3/La2O2CO3:Eu phosphors from arc-discharged graphene-contained composites. Mater. Lett. 134, 176–179 (2014)CrossRefGoogle Scholar
  33. 33.
    Y. Xiao, Z. Feng, X. Huang, L. Huang, Z. Long, Q. Wang, Y. Hou, Synthesis of lanthanum oxide nanosheets by a green carbonation process. Chin. Sci. Bull. 59, 1864–1867 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Moothedan, K.B. Sherly, Synthesis, characterization and sorption studies of nano lanthanum oxide. J. Water Process Engi. 9, 29–37 (2016)CrossRefGoogle Scholar
  35. 35.
    E.K. Goharshadi, T. Mahvelati, M. Yazdanbakhsh, Influence of preparation methods of microwave, sol–gel, and hydrothermal on structural and optical properties of lanthania nanoparticles. J. Iran. Chem. Soc. 13, 65–72 (2016)CrossRefGoogle Scholar
  36. 36.
    X. Wang, M. Wang, H. Song, B. Ding, A simple sol-gel technique for preparing lanthanum oxide nanopowders. Mater. Lett. 60, 2261–2265 (2006)CrossRefGoogle Scholar
  37. 37.
    M.S. Niasaria, G. Hosseinzadeh, F. Davar, Synthesis of lanthanum carbonate nanoparticles via sonochemical method for preparation of lanthanum hydroxide and lanthanum oxide nanoparticles. J. Alloys Compd. 509, 134–140 (2011)CrossRefGoogle Scholar
  38. 38.
    Q. Zhou, H. Zhang, F. Chang, H. Li, H. Pan, W. Xue, D.Y. Hu, S. Yang, Nano La2O3 as a heterogeneous catalyst for biodiesel synthesis by transesterification of Jatropha curcas L. oil. J. Indust. Eng. Chem. 31, 385–392 (2015)CrossRefGoogle Scholar
  39. 39.
    H. Kabir, S.H. Nandyala, M.M. Rahman, M.A. Kabir, Z. Pikramenou, M. Laver, A. Stamboulis, Polyethylene glycol assisted facile sol-gel synthesis of lanthanum oxide nanoparticles: Structural characterizations and photoluminescence studies. Ceram. Int. 45, 424–431 (2019)CrossRefGoogle Scholar
  40. 40.
    G.Z. Jia, Y.F. Wang, J.H. Yao, Fabrication and strain investigation of ZnO nanorods on Si composing sol-gel and chemical bath deposition method. J. Phys. Chem. Solids 73, 495–498 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    C. Hu, H. Liu, W. Dong, Y. Zhang, G. Bao, C. Lao, Z.L. Wang, La(OH)3 and La2O3 nanobelts—synthesis and physical properties. Adv. Mater 19, 470–474 (2007)CrossRefGoogle Scholar
  42. 42.
    B.D. Cullity, Elements of X-ray diffraction, Second edn. (Addison-Wesley Company, Boston, 1978)Google Scholar
  43. 43.
    R. Jenkins, R.L. Snyder, Chemical Analysis: Introduction to ray Powder Diffractometry (Wiley, New York, 1996)CrossRefGoogle Scholar
  44. 44.
    R. John, R. Rajakumari, Synthesis and characterization of rare earth ion doped nano ZnO. Nano-Micro Lett 4, 65–72 (2012)CrossRefGoogle Scholar
  45. 45.
    F. Ozutok, B. Demirselcuk, E. Sarica, S. Turkyilmaz, V. Bilgin, Study of ultrasonically sprayed ZnO films: thermal annealing effect. Acta Phys. Polonica. A 121, 53–55 (2012)CrossRefGoogle Scholar
  46. 46.
    D. Dickson, G. Liu, C. Li, G. Tachiev, Y. Cai, Dispersion and stability of bare hematite nanoparticles: Effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength. Sci. Total Environ. 419, 170–177 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    N. Zhang, R. Yi, L. Zhou, G. Gao, R. Shi, G. Qiu, X. Liu, Lanthanide hydroxide nanorods and their thermal decomposition to lanthanide oxide nanorods. Mater. Chem. Phys. 114, 160–167 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    G. Wang, Y. Zhou, D.G. Evans, Y. Lin, Preparation of highly dispersed nano-La2O3 particles using modified carbon black as an agglomeration inhibitor. Ind. Eng. Chem. Res. 51, 14692–14699 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Humayun Kabir
    • 1
    • 2
    Email author
  • Sooraj Hussain Nandyala
    • 1
  • M. Mahbubur Rahman
    • 2
    • 3
  • Md Alamgir Kabir
    • 1
    • 2
    • 4
  • Artemis Stamboulis
    • 1
    Email author
  1. 1.School of Metallurgy and MaterialsUniversity of BirminghamBirminghamUK
  2. 2.Department of PhysicsJahangirnagar UniversityDhakaBangladesh
  3. 3.Surface Analysis & Materials Engineering Research Group, School of Engineering & Information TechnologyMurdoch UniversityMurdochAustralia
  4. 4.Department of PhysicsKent State UniversityKentUSA

Personalised recommendations