Applied Physics A

, 124:818 | Cite as

Structural phase analysis, optical and magnetic properties of nano Mn-doped LiFe5O8

  • Zein K. Heiba
  • Mohamed Bakr MohamedEmail author


Nano Mn-doped LiFe5O8 was synthesized by citrate procedure. Structural and microstructure investigations have been performed applying X-ray diffraction (XRD), neutron powder diffraction (NPD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM). Field-cooled (FC) and zero field-cooled (ZFC) dc magnetization were measured using a SQUID magnetometer. Law of Approach to saturation model was applied on hysteresis loops measured by vibrating sample magnetometer (VSM) at room temperature to obtain the saturation magnetization and magneto anisotropy constant for all samples. Rietveld analysis of XRD and NPD revealed that LiFe5O8 has ordered cubic structure with space group P4332. On the other hand XRD and FTIR analyses revealed that Mn-doped LiFe5O8 system has biphasic structures; cubic with ordered phase (P4332) and disordered one (Fd\(\overline {3}\)m). TEM image shown that the sample has an average particle size ~ 14 nm. Applying a propagation vector k=(0 0 0), all magnetic peaks of NPD data at 4 K are indexed with total magnetic moment = 1.8 μB. The coercivity and saturation magnetization reduced generally with raising the amount of Mn doping. Photoluminescence spectra of all samples exhibited two UV and one green sub-emissions.



Authors are grateful especially to Prof. H. Fuess from Technische Universität Darmstadt for neutron diffraction data.


  1. 1.
    H. Zeng, T. Tao, Y. Wu, W. Qi, C. Kuang, S. Zhou, Y. Chen, RSC Adv 4, 23145 (2014)CrossRefGoogle Scholar
  2. 2.
    S.J. Stewart, S.H. Al-Harthi, S. Thomas, H. Sitepu, J. Phys. D Appl. Phys. 41, 165006 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    K.K. Kefeni, T.A. M.Msagati, B.B. Mamba, Mater. Sci. Eng. B 215, 37 (2017)CrossRefGoogle Scholar
  4. 4.
    H. Zeng, T. Tao, Y. Wu, W. Qi, C.J. Kuang, S.X. Zhou, Y. Chen, RSC Adv. 4, 23145 (2014)CrossRefGoogle Scholar
  5. 5.
    H.M. Widatallah, C. Johnson, A.M. Gismelseed, I.A. Al-Omari, S.J. Stewart, S.H. Al-Harthi, S. Thomas, H. Sitepu. J. Phys. D 41, 165006 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    P. Naderi, S.M. Masoudpanah, S. Alamolhoda, Appl. Phys. A 123, 702 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    S. Soreto, M. Graça, M. Valente, L. Costa, in Magnetic Spinels— Synthesis, Properties and Applications, ed. by M.S. Seehra (InTech, Rijeka, 2017)Google Scholar
  8. 8.
    E. Kato, Bull. Chem. Soc. Jpn 31, 113 (1958)CrossRefGoogle Scholar
  9. 9.
    K. El-Sayed, M.B. Mohamed, S. Hamdy, S.S. Ata-Allah, J. Magn. Magn. Mater. 423, 291 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    N.G. Jović, A.S. Masadeh, A.S. Kremenović, B.V. Antić, J.L. Blanuša, N.D. Cvjetičanin, G.F. Goya, M.V. Antisari, E.S. Božin, J. Phys. Chem. C 113(48), 20559 (2009)CrossRefGoogle Scholar
  11. 11.
    Y.P. Fu, C.S. Hsu, Solid State Commun. 134, 201 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    B.K. Chougule, J. Magn. Magn. Mater 321, 3270 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    H.M. Widatallah, F.N. Al-Mabsali, F.S. Al-HajriN., A.D. Al-Rawas, M. Elzain, A. Yousif, O. Khalifa, A.M. Gismelseed. Hyperfine Interact 237, 50 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    J.S. Kounsalye, P.B. Kharat, D.N. Bhoyar, K.M. Jadhav, J. Mater. Sci. Mater. Electron. 29, 8601 (2018)CrossRefGoogle Scholar
  15. 15.
    P. Sharma, P. Thakur, J.L. Mattei, P. Queffelec, A. Thakur, J. Magn. Magn. Mater 407, 17 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    L. Lutterotti, Nucl. Inst. Methods Phys. Res. B. 268, 334 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    J. Rodríguez-Carvajal, Phys. B (Amsterdam, Neth.) 192, 55 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    M.B. Mohamed, A. Senyshyn, H. Ehrenberg, H. Fuess, J. Alloys Compd. 492(1–2), L20 (2010)CrossRefGoogle Scholar
  19. 19.
    E. Wolska, P. Pisozora, J. Daeul, W. Nowicki, Mater. Sci. Forum 378, 551 (2001)CrossRefGoogle Scholar
  20. 20.
    J. Darul, W. Nowicki, P. Piszora, C. Baehtz, E. Wolska, J. Alloys Compd. 401, 60 (2005)CrossRefGoogle Scholar
  21. 21.
    C. Wende, Kh Olimov, H. Modro, F.E. Wagner, H. Langbein, Mater. Res. Bull. 41, 1530 (2006)CrossRefGoogle Scholar
  22. 22.
    J. Rodriguez-Carvajal, Applied crystallography (World Scientific, Singapore, 2001), pp. 30–36CrossRefGoogle Scholar
  23. 23.
    D. Alonso-Domínguez, I. Álvarez-Serrano, M.L. López, M.L. Veiga, C. Pico, F. Mompeán, M. García-Hernández, G.J. Cuello, J. Alloys Compd. 577, 269 (2013)CrossRefGoogle Scholar
  24. 24.
    W.B. White, B.A. DeAngelis, Spectrochim Acta 23A, 985 (1967)ADSCrossRefGoogle Scholar
  25. 25.
    V.A.M. Brabers, Spectrochim Acta 32A, 1709 (1976)ADSCrossRefGoogle Scholar
  26. 26.
    V.A. Potakova, N.D. Zverv, V.P. Romanov, Phys. Stat. Sol. (A) 12, 623 (1972)ADSCrossRefGoogle Scholar
  27. 27.
    E. Wolska, P. Piszora, W. Nowicki, J. Darul, Inter. J. Inor. Mater. 3, 503 (2001)CrossRefGoogle Scholar
  28. 28.
    F. Petit, M. Lenglet, Solid State Commun. 86(2), 67 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    S.G. Gawas, S.S. Meena, S.M. Yusuf, V.M.S. Verenkar, New J. Chem. 40, 9275 (2016)CrossRefGoogle Scholar
  30. 30.
    B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (Google eBook) (Wiley, Hoboken, 2011)Google Scholar
  31. 31.
    M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, A. Manikandan, J. Magn. Magn. Mater. 466, 238 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    B. Ramesh, M.L. Rao, J. Alloys Compd. 551, 527–530 (2013)CrossRefGoogle Scholar
  33. 33.
    Z.K. Heiba, M.B. Mohamed, A.M. Wahba, L. Arda, J. Supercond. Nov. Magn 28(8), 2517 (2015)CrossRefGoogle Scholar
  34. 34.
    T.R. M.Guire, F.S. Ferebee, J. Appl. Phys. 34, 6 (1963)Google Scholar
  35. 35.
    Z.K. Heiba, A. Abo-Shama, M. Bakr, K. El-Sayed, Powder Diffr. 22(3), 256 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    L. Kumar, P. Kumar, M. Kar, Appl Nanosci 3, 75 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    B.D. Cullity, Introduction to Magnetic Materials (Wiley, New Jersey, 2009)Google Scholar
  38. 38.
    J.B. Goodenough, A.L. Loeb, Phys Rev 98, 391 (1955)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Melikhov, J.E. Snyder, D.C. Jiles, A.P. Ring, J.A. Paulsen, C.C.H. Lo, K.W. Dennis, J. Appl. Phys. 99, 08R102 (2006)CrossRefGoogle Scholar
  40. 40.
    K. Li, H. Lian, R.V. Deun, J. Lumin. 198, 155 (2018)CrossRefGoogle Scholar
  41. 41.
    A.C. Roy, D. Mohanta, Philos Mag Lett 91(6), 423 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    K. Fujihara, S. Izumi, T. Ohno, M. Matsumura, J. Photochem. Photobiol. A 132, 99 (2000)CrossRefGoogle Scholar
  43. 43.
    Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Supercond. Nov. Magn 30(11), 3123 (2017)CrossRefGoogle Scholar
  44. 44.
    J.J. Manikandan, L.J. Vijaya, M. Kennedy, Bououdina, J. Mol. Struct. 1035, 332 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceTaibah UniversityAl‑Madinah Al‑MunawaraSaudi Arabia
  2. 2.Department of Physics, Faculty of ScienceAin shams UniversityCairoEgypt

Personalised recommendations