Applied Physics A

, 124:825 | Cite as

Fabrication and corrosion property of novel 3-aminopropyltriethoxy-modified calcium phosphate/poly(lactic acid) composite coating on AZ60 Mg alloy

  • Binxin Li
  • Jialin Niu
  • Huiyin Liu
  • Guangyu LiEmail author


To improve the corrosion resistance of AZ60 Mg alloy as orthopaedic implants in human body, a novel 3-aminopropyltriethoxy-calcium phosphate/polylactic acid (APTES-CaP/PLA) composite coating was successfully prepared on AZ60 Mg alloy. 3-aminopropyltriethoxy (APTES) was introduced to enhance the interfacial strength between CaP and PLA in the CaP/PLA composite coating. CaP coating was first prepared by chemical conversion method prior to its surface silanization with APTES, and then was dip-coated with PLA to prepare APTES-CaP/PLA composite coating. The as-prepared APTES-CaP/PLA coating presented a more uniform and defectless surface compared with the unmodified CaP/PLA coating. The FTIR spectra confirmed the successful coupling of APTES with CaP and PLA. Electrochemical tests and 7-day immersion test were conducted in the simulated body fluid (SBF) at 37 °C, and whose results indicated that the corrosion resistance of the composite coating was improved obviously after the introducing of silane coupling agent. The interfacial adhesion strength was characterized by Tape Test method according to ASTM D3359-93, which showed that the interfacial strength of the composite coating was greatly enhanced. These results demonstrated that the APTES-CaP/PLA coating had great potential on facilitating the clinical application of Mg-based orthopaedic implants because of its excellent degradation resistance in body fluid environment.



This work was supported by the China National Nature Science Foundations (Grant Nos. 31070841 and 51705195).


  1. 1.
    S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng. C Mater. Biol. Appl. 68, 948–963 (2016)CrossRefGoogle Scholar
  2. 2.
    A.R. Boccaccini, J.J. Blaker, Bioactive composite materials for tissue engineering scaffolds. Expert Rev. Med. Devices 2(3), 303–317 (2005)CrossRefGoogle Scholar
  3. 3.
    B.L. Mordike, T. Ebert, Magnesium: properties—applications—potential. Mat. Sci. Eng. Struct. 302(1), 37–45 (2001)CrossRefGoogle Scholar
  4. 4.
    F. Witte, The history of biodegradable magnesium implants: a review. Acta Biomater. 6(5), 1680–1692 (2010)CrossRefGoogle Scholar
  5. 5.
    G. Song, A. Atrens, Understanding magnesium corrosion—a framework for improved alloy performance, Adv. Eng. Mater. 5(12), 837–858 (2003)CrossRefGoogle Scholar
  6. 6.
    F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26(17), 3557–3563 (2005)CrossRefGoogle Scholar
  7. 7.
    H. Hornberger, S. Virtanen, A.R. Boccaccini, Biomedical coatings on magnesium alloys—a review. Acta Biomater. 8(7), 2442–2455 (2012)CrossRefGoogle Scholar
  8. 8.
    B.L.J.E. Gray, Protective coatings on magnesium and its alloys—a critical review. J. Alloy. Compd. 336(1), 88–113 (2002)CrossRefGoogle Scholar
  9. 9.
    J. Wang, J. Tang, P. Zhang, Y. Li, J. Wang, Y. Lai, L. Qin, Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review. J. Biomed. Mater. Res. B Appl. Biomater. 100(6), 1691–1701 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Yang, F. Cui, I.S. Lee, Surface modifications of magnesium alloys for biomedical applications. Ann. Biomed. Eng. 39(7), 1857–1871 (2011)CrossRefGoogle Scholar
  11. 11.
    S.V. Dorozhkin, Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater. 10(7,), 2919–2934 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Shadanbaz, G.J. Dias, Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater. 8(1), 20–30 (2012)CrossRefGoogle Scholar
  13. 13.
    R.A. Surmenev, M.A. Surmeneva, A.A. Ivanova, Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—a review. Acta Biomater. 10(2), 557–579 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Su, C. Luo, Z. Zhang, H. Hermawan, D. Zhu, J. Huang, Y. Liang, G. Li, L. Ren, Bioinspired surface functionalization of metallic biomaterials. J. Mech. Behav. Biomed. 77, 90–105 (2018)CrossRefGoogle Scholar
  15. 15.
    X.B. Chen, N. Birbilis, T.B. Abbott, Effect of [Ca2+] and [PO4 3–] levels on the formation of calcium phosphate conversion coatings on die-cast magnesium alloy AZ91D. Corros. Sci. 55, 226–232 (2012)CrossRefGoogle Scholar
  16. 16.
    G.Y. Liu, J. Hu, Z.K. Ding, C. Wang, Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition. Appl. Surf. Sci. 257(6), 2051–2057 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    G.Y. Liu, J. Hu, Z.K. Ding, C. Wang, Formation mechanism of calcium phosphate coating on micro-arc oxidized magnesium. Mater. Chem. Phys. 130(3), 1118–1124 (2011)CrossRefGoogle Scholar
  18. 18.
    L. Xu, F. Pan, G. Yu, L. Yang, E. Zhang, K. Yang, In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 30(8), 1512–1523 (2009)CrossRefGoogle Scholar
  19. 19.
    Y. Su, L. Niu, Y. Lu, J. Lian, G. Li, Preparation and corrosion behavior of calcium phosphate and hydroxyapatite conversion coatings on AM60 magnesium alloy. J. Electrochem. Soc. 160(11), C536–C541 (2013)CrossRefGoogle Scholar
  20. 20.
    A.P. Gupta, V. Kumar, New emerging trends in synthetic biodegradable polymers—polylactide: a critique. Eur. Polym. J. 43(10), 4053–4074 (2007)CrossRefGoogle Scholar
  21. 21.
    A.J. Lasprilla, G.A. Martinez, B.H. Lunelli, A.L. Jardini, R.M. Filho, Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol. Adv. 30(1), 321–328 (2012)CrossRefGoogle Scholar
  22. 22.
    W. Zhang, Y. Chen, M. Chen, S. Zhao, J. Mao, A. Qu, W. Li, Y. Zhao, N. Huang, G. Wan, Strengthened corrosion control of poly (lactic acid) (PLA) and poly (ε-caprolactone) (PCL) polymer-coated magnesium by imbedded hydrophobic stearic acid (SA) thin layer. Corros. Sci. 112, 327–337 (2016)CrossRefGoogle Scholar
  23. 23.
    C.A. Mills, M. Navarro, E. Engel, E. Martinez, M.P. Ginebra, J. Planell, A. Errachid, J. Samitier, Transparent micro- and nanopatterned poly(lactic acid) for biomedical applications. J. Biomed. Mater. Res. A 76(4), 781–787 (2006)CrossRefGoogle Scholar
  24. 24.
    S. Kaabi Falahieh Asl, S. Nemeth, M.J. Tan, Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate. J. Biomed. Mater. Res. B Appl. Biomater. 104(8), 1643–1657 (2016)CrossRefGoogle Scholar
  25. 25.
    B. Li, K. Zhang, W. Yang, X. Yin, Y. Liu, Enhanced corrosion resistance of HA/CaTiO3/TiO2/PLA coated AZ31 alloy. J. Taiwan Inst. Chem. E. 59, 465–473 (2016)CrossRefGoogle Scholar
  26. 26.
    L. Zhang, J. Pei, H. Wang, Y. Shi, J. Niu, F. Yuan, H. Huang, H. Zhang, G. Yuan, Facile preparation of poly(lactic acid)/brushite bilayer coating on biodegradable magnesium alloys with multiple functionalities for orthopedic application. ACS Appl. Mater. Interfaces 9(11), 9437–9448 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Diez, M.H. Kang, S.M. Kim, H.E. Kim, J. Song, Hydroxyapatite (HA)/poly-l-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications. J. Mater. Sci. Mater. Med. 27(2), 34 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Abdal-hay, N.A.M. Barakat, J.K. Lim, Hydroxyapatite-doped poly(lactic acid) porous film coating for enhanced bioactivity and corrosion behavior of AZ31 Mg alloy for orthopedic applications. Ceram. Int. 39(1), 183–195 (2013)CrossRefGoogle Scholar
  29. 29.
    A. Alabbasi, S. Liyanaarachchi, M.B. Kannan, Polylactic acid coating on a biodegradable magnesium alloy: an in vitro degradation study by electrochemical impedance spectroscopy. Thin Solid Films 520(23), 6841–6844 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    R.E. Neuendorf, E. Saiz, A.P. Tomsia, R.O. Ritchie, Adhesion between biodegradable polymers and hydroxyapatite: relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomater. 4(5), 1288–1296 (2008)CrossRefGoogle Scholar
  31. 31.
    T.F. Child, W.J. van Ooij, Application of silane technology to prevent corrosion of metals and improve paint adhesion. Trans. IMF 77(2), 64–70 (2017)CrossRefGoogle Scholar
  32. 32.
    Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Silane coupling agents used for natural fiber/polymer composites: a review. Compos. Part A Appl. S. 41(7), 806–819 (2010)CrossRefGoogle Scholar
  33. 33.
    E. Plueddemann, Silane Coupling Agents, (Springer Science & Business Media, New York, 2013)Google Scholar
  34. 34.
    K.L. Mittal, Silanes and Other Coupling Agents, vol. 3, (CRC Press, Boca Raton, 2004)CrossRefGoogle Scholar
  35. 35.
    J. Liu, B. Zheng, P. Wang, X. Wang, B. Zhang, Q. Shi, T. Xi, M. Chen, S. Guan, Enhanced in vitro and in vivo performance of Mg–Zn–Y–Nd alloy achieved with APTES pretreatment for drug-eluting vascular stent application. ACS Appl. Mater. Interfaces 8(28), 17842–17858 (2016)CrossRefGoogle Scholar
  36. 36.
    J. Jang, K. Kim, Eui, Corrosion protection of epoxy-coated steel using different silane coupling agents. J. Appl. Polym. Sci. 71(4), 585–593 (1999)CrossRefGoogle Scholar
  37. 37.
    Z. Fang, Q. Feng, Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite. Mater. Sci. Eng. C Mater. Biol. Appl. 35, 190–194 (2014)CrossRefGoogle Scholar
  38. 38.
    X. Wang, G. Song, T. Lou, Fabrication and characterization of nano-composite scaffold of PLLA/silane modified hydroxyapatite. Med. Eng. Phys. 32(4), 391–397 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    T. Lu, S. Liu, M. Jiang, X. Xu, Y. Wang, Z. Wang, J. Gou, D. Hui, Z. Zhou, Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly(lactic acid) composites. Compos. Part B Eng. 62, 191–197 (2014)CrossRefGoogle Scholar
  40. 40.
    J. Niu, H. Liu, X. Ping, X. Xun, G. Li, Silane coupling agent (SCA) pretreatment and polycaprolactone (PCL) coating for enhanced corrosion resistance for magnesium, J. Coat. Technol. Res. (2018)Google Scholar
  41. 41.
    Y. Su, Y. Guo, Z. Huang, Z. Zhang, G. Li, J. Lian, L. Ren, Preparation and corrosion behaviors of calcium phosphate conversion coating on magnesium alloy. Surf. Coat. Tech. 307, 99–108 (2016)CrossRefGoogle Scholar
  42. 42.
    J. Zhang, C.-S. Dai, J. Wei, Z.-H. Wen, Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate. Appl. Surf. Sci. 261, 276–286 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    C. Sekar, P. Kanchana, R. Nithyaselvi, E.K. Girija, Effect of fluorides (KF and NaF) on the growth of dicalcium phosphate dihydrate (DCPD) crystal. Mater. Chem. Phys. 115(1), 21–27 (2009)CrossRefGoogle Scholar
  44. 44.
    Z.L. Wang, Y.H. Yan, T. Wan, H. Yang, Poly(l-lactic acid)/hydroxyapatite/collagen composite coatings on AZ31 magnesium alloy for biomedical application. Proc. Inst. Mech. Eng. H 227(10), 1094–1103 (2013)CrossRefGoogle Scholar
  45. 45.
    S. Zhou, X. Zheng, X. Yu, J. Wang, J. Weng, X. Li, B. Feng, M. Yin, Hydrogen bonding interaction of poly(d,l-lactide)/hydroxyapatite nanocomposites. Chem. Mater. 19(2), 247–253 (2007)CrossRefGoogle Scholar
  46. 46.
    S.M. Zhang, J. Liu, W. Zhou, L. Cheng, X.D. Guo, Interfacial fabrication and property of hydroxyapatite/polylactide resorbable bone fixation composites. Curr. Appl. Phys. 5(5), 516–518 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    B. Wei, Q. Chang, C. Bao, L. Dai, G. Zhang, F. Wu, Surface modification of filter medium particles with silane coupling agent KH550. Colloid. Surf. A 434, 276–280 (2013)CrossRefGoogle Scholar
  48. 48.
    C.L. Popa, A. Groza, P. Chapon, C.S. Ciobanu, R.V. Ghita, R. Trusca, M. Ganciu, D. Predoi, Physicochemical analysis of the polydimethylsiloxane interlayer influence on a hydroxyapatite doped with silver coating. J. Nanomater. 2015, 1–10 (2015)Google Scholar
  49. 49.
    B. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd edn. (CRC Press, Boca Raton, 2011)CrossRefGoogle Scholar
  50. 50.
    S.F. Mertens, C. Xhoffer, B.C. De Cooman, E. Temmerman, Short-term deterioration of polymer-coated 55% Al-Zn—part 1: behavior of thin polymer films. Corrosion 53(5), 381–388 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Automobile Materials, Ministry of Education and Department of Materials Science and EngineeringJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations